X-Ray Diffraction in the Field and Lab on the Moon

Jeff Taylor
Hawai`i Institute of Geophysics and Planetology
University of Hawai`i

Dave Blake, Jeff Gillis-Davis, Steve Chipera, Dave Bish, Julia Hammer, Paul Lucey, Dave Vaniman, Philippe Sarrizin
X-Ray Diffraction in the Field and Lab on the Moon

- Need for laboratory instruments on the Moon
- The CheMin/Terra instrument
- Lunar sample analysis
- Examples of science targets
- Conclusions
- Important implications
Motivation for Lab Instruments on the Moon: LEAG Goals

- Objective 1A-8: Development and implementation of sample return technologies and protocols
 - Investigation-3: Understand what analyses (field and laboratory) need to be done on the Moon to aid field studies and optimize the value of samples returned to Earth.

Implication: To optimize lunar surface activities, facilities must be designed with space and power for laboratory instruments.
Inverse Motivation

• From a review of an XRD instrument for use on the Moon (submitted to LASER program):

 “Developing instruments for a lunar habitat should be deferred until decisions on habitat architecture are made.”

This is short sighted and backwards reasoning.
The CheMin Instrument Concept

Sold commercially by inXitu, Inc. as Terra.
CheMin on Mars Science Laboratory
Terra Tested in Field

Doug Ming with Terra in the dry valleys of Antarctica, January, 2008

Terra in Svalbard, Norway (80° N), AMASE Expedition, Aug. 2007
Use on the Moon

XRD on the Moon

Jeff Taylor

LEAG-SRR-ILEWG
Terra Tested with Lunar Samples

XRD on the Moon

Jeff Taylor

LEAG-SRR-ILEWG
Terra Tested with Lunar Samples

Lunar Pyroclastic Glasses and Analogs

- Lunar Orange
- Artificial Red
- Lunar Green
- Artificial Green

Normalized Intensity vs. Degrees 2θ (Co Kα)
Quantitative Mineralogy of Lunar Soils

Point counting by L. A. Taylor et al. (http://web.utk.edu/~Epgi/data.html)
Examples of Science Targets

- Pyroclastic deposits
 - Glass/crystal ratio
 - Minerals present
 - Chemical composition
Examples of Science Targets

- Evolved magmas
 - Abundance of rare lunar minerals:
 - Alkali feldspar
 - Quartz
 - Phosphates
 - Zircon
 - Distinctive chemical compositions
 - Potential resources
Examples of Science Targets

- Mare basalts
 - Detailed mapping of compositional units
 - Stratigraphy
 - Mineral changes:
 - Olivine abundance
 - Ilmenite abundance
 - Feldspar abundance

From:
Hiesenger et al. (2003), top
Giguere et al. (2003), bottom
Examples of Science Targets

- Polar deposits
 - Search for unusual products:
 - Clathrates
 - Water ice
 - Hydrous minerals
 - Understanding lateral and vertical variations in them
Conclusions

• Terra would be valuable in lunar geologic exploration
• Can be used:
 – On a robotic rover
 – On a robotic rover accompanying humans
 – In a laboratory at a lunar base
• Qualitative analysis can be done in 5 min
• Does not require significant astronaut time in the lab or field
Important General Implications for Optimizing Lunar Science Activities

Surface facilities must be designed with space and power for laboratory instruments.

We need to determine what instruments are most needed and most cost-effective.
We must decide what astronauts will do on the Moon and design facilities to allow them to do those things.

We must not design facilities first, and then expect astronauts to accomplish significant lunar science and exploration goals.