A search for extraterrestrial planets is a difficult task, because their thermal emission would be strongly masked by the emission from hot dust in the surrounding matter. It seems that, at present, there is no other means of detecting very distant planetary bodies except of their molecular maser emission forming in the atmosphere of the protoplanet. Among the most widespread masers are class II methanol masers emitting in the $5_1-6_0 A^+$ transition at 6.7 GHz, which are found in star-forming regions. High-resolution images of such masers demonstrate a structure which could be interpreted by the circumstellar disk with Keplerian motion of the maser spots as protoplanets around central massive object. The problem is to obtain the mass of this object and to evaluate the mass of these protoplanets. We present a new way to obtain the velocity of the central protostar and to calculate its mass. The analysis has been carried out for a double protostar in the Norma constellation which is accompanied by two protoplanetary systems emitting in methanol. Masses of protostars are in the interval of 10−40M_\odot and protoplanets have a mass approximately equal to the mass of the Earth.