Friday, March 19, 2004

EARLY SOLAR SYSTEM CHRONOLOGY

8:30 a.m. Salon C

Chairs: M. Wadhwa
D. A. Papanastassiou

8:30 a.m. Wadhwa M. * Foley C. N. Janney P. E. Spivak-Birndorf L.

Mg Isotopic Systematics in Eucrites: Implications for the 26Al-26Mg Chronometer [#1843]

We present high precision Mg isotopic analyses of several eucrites. Based on these results, and comparisons with Mn-Cr and Pb-Pb systematics in these meteorites, we present the implications for the viability of the 26Al-26Mg system as a chronometer.

8:45 a.m. Ito M. * Ganguly J. Stimpfl M.

Diffusion Kinetics of Cr in Olivine and 53Mn-53Cr Thermo-Chronology of Early Solar System Objects [#1324]

We have determined the Cr diffusivity in olivine as a function of temperature at controlled fO$_2$ condition, and applied these data to evaluate the thermochronology (closure temperature, age and cooling rate) of olivine in pallasite.

9:00 a.m. Kleine T. Mezger K. Palme H. * Münker C.

The W Isotope Composition of Eucrite Metals: Constraints on Timing and Cause of the Thermal Metamorphism of Eucrites [#1230]

We present new W isotope data for eucrite metals that for the first time allow precise dating of the thermal metamorphism of eucrites.

9:15 a.m. Srinivasan G. * Whitehouse M. J. Weber I. Yamaguchi A.

U-Pb and Hf-W Chronometry of Zircons from Eucrite A881467 [#1709]

Measurement of 182Hf abundance in zircons whose age has been determined using U-Pb system. This study presents the first result in which a mineral isochron for Hf-W is reported.

9:30 a.m. Huss G. R. * Tachibana S.

Clear Evidence for 60Fe in Silicate from a Semarkona Chondrule [#1811]

A radiating-pyroxene chondrule from Semarkona shows clear excesses of 60Ni correlated with Fe/Ni, implying the presence of live 60Fe when it formed. An initial 60Fe/54Fe ratio of $\sim 2.4 \times 10^{-7}$ implies (60Fe/54Fe)$_0$ for the solar system of $\sim 5 \times 10^{-7}$.

9:45 a.m. Moynier F. * Télouk P. Blichert-Toft J. Albarède F.

The Isotope Geochemistry of Nickel in Chondrites and Iron Meteorites [#1286]

Ni in ordinary chondrites becomes isotopically heavier in the order LL, L, H. This trend reflects mass-dependent fractionation during vapourisation. No strong 60Ni anomaly is detected. Segregation of the Earth’s core started after the decay of 60Fe.

10:00 a.m. BREAK

10:15 a.m. Mostefaoui S. * Lugmair G. W. Hoppe P.

In-Situ Evidence for Live Iron-60 in the Early Solar System: A Potential Heat Source for Planetary Differentiation from a Nearby Supernova Explosion [#1271]

We report in-situ 60Ni-excesses in two minerals in Bishunpur. The inferred 60Fe abundance is the highest measured in a meteorite. It gives the first evidence for a supernova origin of 60Fe, which served as a heat source for planetary differentiation.
10:30 a.m. Chen J. H. * Papanastassiou D. A. Wasserburg G. J. Ngo H. H.
Endemic Mo Isotopic Anomalies in Iron and Carbonaceous Meteorites [#1431]
Iron meteorites, carbonaceous meteorites and Ca-Al-rich inclusions show endemic isotope anomalies in molybdenum which correlate also with ruthenium effects.

10:45 a.m. Dauphas N. * Foley N. Wadhwa M. Davis A. M. Göpel C. Birck J.-L. Janney P. E. Gallino R.
Testing the Homogeneity of the Solar System for Iron (54, 56, 57, and 58) and Tungsten (182, 183, 184, and 186) Isotope Abundances [#1498]
The solar nebula was homogenized at a planetary scale at the 0.2 and 0.5 level for ^{56}Fe and ^{58}Fe, respectively. Preliminary results seem to indicate the presence of a s-process tungsten component in leaching experiments of primitive meteorites.

11:00 a.m. Chaussidon M. * Robert F. McKeegan K. D.
Li and B Isotopic Variations in Allende Type B1 CAI 3529-41: Traces of Incorporation of Short-lived ^7Be and ^{10}Be [#1568]
Allende CAI 3529-41 contains Li and B isotopic variations due to the in-situ decay of short-lived ^7Be and ^{10}Be. Thus CAI precursors were irradiated by the early Sun and no presolar component is required to explain ^{10}Be in CAIs.

The Origin of Short-lived Radionuclides and Early Solar System Irradiation [#1829]
Using the irradiation model developed by Gounelle et al. (2001), we can reproduce the abundance of ^7Be measured by Chaussidon et al. (2004, this conference). We also provide a tentative explanation for the hibonite grains that show a decoupling between ^{26}Al and ^{10}Be (Marhas et al. 2002).

11:30 a.m. Papanastassiou D. A. * Chen J. H. Wasserburg G. J.
More on Ru Endemic Isotope Anomalies in Meteorites [#1828]
We present evidence for well-defined and resolved endemic isotope anomalies in Ru, consistent with an s-process deficit. Primitive meteorites, CAIs, and planetary differentiates (irons) show these effects and evidence of preserved isotope heterogeneities.

11:45 a.m. Lin Y. Guan Y. * Leshin L. A. Ouyang Z. Wang D.
Evidence for Live ^{36}Cl in Ca-Al-rich Inclusions from the Ningqiang Carbonaceous Chondrite [#2084]
From the observed ^{36}S excesses in sodalite in calcium-aluminum-rich inclusions, we report the first direct evidence of the presence of ^{36}Cl in primitive meteorites. The inferred ($^{36}\text{Cl}/^{35}\text{Cl}$) ratios range from $\sim5 \times 10^{-6}$ to $\sim1 \times 10^{-5}$.