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Introduction:  Chassigny is the Martian dunite 

composed of cumulate olivine (92%), chromite (1.4%), 
pyroxene (5%) and interstitial feldspar (1.7%) [1-3]. 
Although nakhlites (clinopyroxenite) are less intensely 
affected by shock metamorphism, Chassigny has been 
subjected to a peak shock pressure of about 35 GPa 
[4]. The cosmic-ray exposure age of Chassigny (11.3 ± 
0.6 Ma) is comparable to those of nakhlites, suggesting 
launch pairing of these meteorites [4]. Prior chemical 
and isotopic studies of Chassigny suggest that the me-
teorite crystallized ~1.3 Ga ago and is closely related 
to nakhlites [4-8]. Nevertheless, compared to other 
Martian meteorites there are limited isotopic data for 
Chassigny [8-10]. To examine the relationship of 
Chassigny to nakhlites, we have undertaken new Rb-Sr 
and Sm-Nd isotopic studies. Here we present the new 
Sm-Nd isotopic data for Chassigny and discuss the 
nature of its source materials. 

Sample and Analytical Procedures:  The meteor-
ite studied (USNM 624) was an ~1.7 g chip with sawn 
surfaces. This sample was first washed with ethanol in 
an ultrasonic bath for 5 minutes to remove brownish 
surface deposits and rusts, and then processed by gen-
tly crushing to grain size <149 µm. About 15% of the 
crushed material was taken as whole-rock samples 
(WR1, WR and reserve). The rest of this sample was 
further crushed and sieved into two size fractions, 149-
74 µm and <74 µm. Mineral separates were made from 
the finer fraction using heavy liquids. A feldspar-rich 
sample (FELD) floated in the 2.85 g/cm3 heavy liquid 
was obtained. A pyroxene-rich sample (PX) and an 
olivine-rich sample were prepared using a heavy liquid 
of density 3.45 g/cm3. Most pyroxenes floated in this 
heavy liquid, whereas most olivines sank. From the 
coarser fraction, we obtained a non-magnetic (NMAG) 
sample using a Frantz isodynamic magnetic separator. 
The WR sample was washed with 0.5N HCl in an ul-
trasonic bath for 10 minutes to leach out phosphate. 
Both residue and leachate of the whole-rock sample, 
WR(r) and WR(l), plus six unleached samples (WR1, 
FELD, NMAG, PX, OL and OL2) were analyzed for 
Sm and Nd following the procedures of [11]. The iso-
topic measurements were made on a Finnigan-MAT 
262 multi-collector mass spectrometer following the 
procedures of [12]. Because of the low Sm and Nd 
contents of the samples, Sm and Nd isotopes were 
measured as SmO+ and NdO+. The 143Nd/144Nd results 
for samples reported here were renormalized to 
143Nd/144Nd = 0.511138 for the Caltech Nd standard 

n(Nd)β [13] 
Results and Discussion:  The Sm and Nd concen-

trations of the whole-rock sample (WR1) of Chassigny 
are in good agreement with the previous results for this 
meteorite [5, 7] (Fig. 1a). We tried to selectively leach 
out chlorapatite by washing with 0.5N HCl, but the 
obtained leachate, WR(l), does not show a great REE 
enrichment (<10 x CI); because REE abundances of 
chlorapatite in Chassigny usually exceed ~1000 x CI 
[14]. The leaching results show that the WR(l) sample 
does not contain much chlorapatite, and that some oli-
vine and feldspar were also dissolved by the procedure. 
Neodymium and Sm concentrations in the PX sample 
are in close agreement with the data for Chassigny 
augite by ion probe [14] (Fig. 1b). Our FELD sample 
seems to be impure and contains some REE-carrier 
phases, comparing to the data by ion probe (Fig. 1b). 
Olivine fractions (OL and OL2) possess the lowest 
REE abundances among all mineral concentrates but 
their Sm/Nd ratios are almost identical to that of WR1. 
All samples, including the acid leachate and residue of 
whole-rock, show LREE-enriched signatures. Never-
theless, we obtained a significant variation in 
147Sm/144Nd ratios from 0.0947 to 0.168 exceeding that 
previously obtained by acid leaching (0.107 to 0.151) 
[10]. 

The Sm-Nd isochron diagram of Chassigny is pre-
sented in Fig. 2. Eight data points, including whole-
rock leachate, WR(l), and residue, WR(r), define a 
linear array corresponding to a Sm-Nd age of 1.36 ± 
0.03 Ga for λ(147Sm) = 0.00654 Ga-1 with an initial 
ε143Nd = +16.6 ± 0.2 using the Williamson regression 
program [15]. The FELD point slightly deviates up-
ward from the isochron by 0.46ε, suggesting a minor 
isotopic disturbance due to the shock metamorphism 
[4]. The Sm-Nd age of 1.36 ± 0.03 Ga is in agreement 
with the two-point Sm-Nd tie-line age of 1.36 ± 0.06 
Ga obtained by an acid leaching experiment [10] and 
with the 39Ar-40Ar age of 1.32 ± 0.07 Ga [16], but is 
~0.1 Ga older than the Rb-Sr age of 1.24 ± 0.01 Ga 
(recalculated using λ(87Rb) = 0.01402 Ga-1) by Naka-
mura et al. [8]. The initial ε143Nd value of +16.6 ± 0.02 
differs by ~1 ε-unit compared to that reported by 
Jagoutz [10]. 

Figure 3 shows the age (T) and ε143Nd parameters 
for Chassigny compared to nakhlites. Chassigny and 
nakhlites probably are genetically closely related. They 
all crystallized within ± 0.1 Ga and have positive ini-
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tial ε143Nd values that vary by only 3 ε-units, suggest-
ing they all came from LREE-depleted source regions. 
Assuming that the Chassigny source formed from a 
reservoir of chondritic 143Nd/144Nd and 147Sm/144Nd at 
4.56 Ga, the time-averaged 147Sm/144Nd ratio for the 
source is calculated to be 0.239. Similar 147Sm/144Nd 
ratios for sources of Chassigny, Governador Valadares 
and Lafayette suggest that they could have been co-
magmatic, or at least could have come from very simi-
lar mantle sources. On the other hand, three nakhlites, 
Nakhla, Northwest Africa 998 and Yamato 000593, 
appear to be from ‘similar’ but distinct sources. 
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Fig. 1. (a) CI-chondrite normalized Nd and Sm abundances 
of Chassigny whole-rock samples (unleached whole-rock: 
WR1, leachate: WR(l) and residue: WR(r)). Rare earth pat-
terns for whole-rock samples of Chassigny [7] and nakhlites 
Governador Valadares [17] and Lafayette [18] are also 
shown. (b) Nd and Sm abundances of mineral separate sam-
ples. The data for Chassigny augite (core and rim) and pla-
gioclase by ion probe are from [14]. 
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Fig. 2. Sm-Nd isochron plot for Chassigny. 
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Fig. 3. ε143Nd-T diagram for Chassigny (this work), Nakhla 
[19], Lafayette [20], Governador Valadares [11], Yamato 
000593 [21] and Northwest Africa 998 [22]. 
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