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Volatile depletion was a ubiquitous concomitant 
of planet formation, especially in the inner solar 
system. Isotopic variations of Mg, a major element 
with three stable isotopes, can potentially provide 
insight into this important aspect of planetary origin 
[1-4]. Refractory components within chondrites have 
δ25Mg up to +10 ‰ [4]. Relatively large variations 
(up to 3 ‰) have even been reported for terrestrial 
mantle samples [5]. Lunar samples are of interest 
because the “bone dry” Moon is often envisaged as a 
product of some extraordinary process(es) that gave 
it a refractory-element enriched bulk composition; 
and because various types of spherules dispersed in 
the lunar regolith formed by ballistic transport of 
molten droplets. 

For this study, we employed a UV laser-ablation 
MC-ICPMS system to measure Mg isotope ratios in 
mafic components of highland impact melt breccia 
65785 and Apollo 12 mare basalts 12006, 12009, 
12012 and 12016; mare volcanic spheroids from 
Apollo 15 (15427 green glasses) and Apollo 17 
(74002 black spheroids); and spheroids, presumably 
almost all of impact melt origin, from highland soils 
61241 and 65700. We used a standard-sample 
comparison method to correct for mass fractionation 
in the MC-ICPMS instrument. The laser was a 213 
nm system operated at a sample fluence of ~ J/cm2. 
Spot diameters were 50-75 µm for crystalline 
samples, 40 µm for mare volcanic spheroids, and as 
narrow as 25 µm for highland impact spheroids; with 
pit depths of order 20 µm. Our δ25Mg precision, 
inferred from analyses of olivine from the terrestrial 
San Carlos (USNM#136718) peridotite, is ±0.2‰. 
We have also obtained similar (but still preliminary) 
results by applying a 193 nm excimer laser to fused 
glasses of several lunar meteorites. 

Previously, Esat and Taylor [2] (data mostly 
originally published by [6]) reported 13 lunar δ25Mg 
analyses, 4 for breccia 67016 and 9 for mare 
volcanic glasses. They found no fractionation vs. 
terrestrial Mg, but their data were imprecise, with an 
“analytical reproducibility” of 1.5 ‰. Norman et al. 
[3] showed far more precise LA-MCICP-MS data for 
Apollo 12 olivines, but they found it necessary to 
correct for a strong matrix effect. In their initial data, 
the most FeO-rich olivines (Fo~50) appeared ~1.4 ‰ 
heavier than the San Carlos (SC) reference terrestrial 
olivine. After correction for FeO, the data of [3] 
indicate close similarity between lunar basalts and 
various Earth mafic rocks. Our measurements 
showed no such FeO-linked matrix effect. We did 

notice a similar effect when we tested an 
instrumental configuration with a 193-nm laser 
combined with a small sample cell that we normally 
used only in conjunction with a 213-nm laser. But 
with the two configurations normally employed, we 
observed no correlation between mg (over the range 
29-80 mol%) and δ25Mg. 

Our results (Fig. 1; error ellipses are 1-σ) indicate 
little systematic fractionation vs. Earth’s mantle for 
any of the five types of analyzed lunar material. Only 
a single 65785 spot (dominantly pyroxene) yielded a 
result several sigma from 0. Note that the regolith 
spheroid analyses show greater scatter, as a result of 
the lesser spot diameters (and lower signal) required 
for these tiny samples. Even so, it appears that the 
Apollo 15 green VLT-mare glasses are significantly 
heavier than their Apollo 17 high-Ti counterparts. 

By far the most abundant refractory elements are 
Al and Ca. By some estimates [e.g., 7-9] these 
elements are not significantly enriched in the bulk 
Moon. However, Fig. 2 compares the estimated bulk-
Moon Al/Mg ratio according to Taylor [10; cf. 2] 
with a variety of chondrites analyzed by Jarosewich 
[11], the solar photosphere [12], and estimated bulk 
compositions for Earth, Mars and the HED asteroid 
(literature estimates, averaged; from review by [7]). 
Compared to the bulk solar system, to Earth, or to 
chondrites of similar FeO/MnO, Taylor’s [10] 
estimated Moon is enriched in Al by a factor of 
~1.75.  

Fig. 1
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The issues of volatile depletion and refractory 
enrichment are not necessarily related. For 10 of the 
11 basic types of chondrites [11], total depletion of 
every constituent with volatility (i.e., solar nebula 
condensation temperature: [13]) between that of Si 
and the most volatile of all (H2O) would increase the 
concentrations of all elements more refractory than 
Si by a factor of 1.02-1.09 (average 1.05), an 
“enrichment” that, in a bulk planet, must be hard to 
detect. The refractory enrichments could conceivably 
arise by preferential accretion of some minor, almost 
pure-refractory component. However, the only 
realistic candidates for such a role among chondritic 
materials, the CAIs, have highly distinctive O-
isotopic compositions [14]. If the refractory-enriched 
bulk Moon hypothesis is correct, the enrichments are 
more plausibly the result of loss of less refractory 
major oxides during high-temperature processing. 
Ignoring potential fractionation among FeO + MgO 
+ SiO2 (FeO is more volatile than MgO [15], yet the 
Moon is widely [e.g., 8-10] claimed to be not 
depleted but enriched in FeO/MgO in comparison to 
Earth), a 1.75-fold enrichment in refractory elements 
would require that 43% of a former complement of 
Mg was lost. 

The Moon is generally believed to have formed 
as a result of a giant impact between Earth and a 
roughly Mars-sized intruder. According to Canup 
[16], 28% of the post-impact orbiting matter in a 
nominal giant impact model is heated to >5000°C, 
and only 24% is at <2000°C. The ultimate formation 
of the Moon from such an orbiting silicate cloud 
remains a major extrapolation, but it is not 
unreasonable to suppose that the major oxides might 
have recondensed less efficiently than Al, Ca and 
other refractories. The hypothesis of refractory-
enrichment by differential recondensation goes back 
to one of the very earliest formulations of the giant 

impact hypothesis [17]. 
For the purpose of testing such hypotheses, an 

advantage of Mg is that it is a major element. 
Humayun and Clayton [18] observed no K isotopic 
effects in lunar samples, and Poitrasson et al. [19] 
observed only very small effects in Fe. As a minor 
element much more volatile than bulk lunar-
terrestrial matter, K was conceivably accreted 
preponderantly in a minor volatile-rich component 
whose provenance and/or physical evolution were 
atypical of the bulk Moon and Earth. No such 
exceptionality can be invoked for Mg (or Fe). 

The precise Mg-isotopic match between the 
Moon and other primitive materials, including 
Earth’s mantle, implies that Rayleigh distillation can 
be eliminated as a potential mechanism for achieving 
the putative extraordinary enrichments in refractory 
lithophile elements. However, ideal Rayleigh 
distillation requires that heating and vaporization (or 
cooling and condensation) occur on a time scale 
commensurate with the time scale for mixing within 
the condensed material [1]. It is still possible, in 
principle, that the giant impact origin of the Moon 
led to a major volatility-depletion of Mg. But 
credibility is further strained by the popular notion 
[e.g, 2, 8-10] of a large enrichment in the 
comparatively volatile FeO vs. the Earth. 
Systematically subchondritic Nb/Ta ratios among 
lunar rocks [20] (cf. the precise Moon-Earth matches 
in O [14] and Cr [21] isotopes) suggest at least 35% 
of the Moon was derived from the Earth. 
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