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Introduction: Estimates of the thermal conductivity
of the Martian crust are important in theoretical
calculations of the depth to melting of the Martian
cryosphere. The thermal conductivity of real layers in
the subsurface is not well constrained. Thermal
modelers typically use 1-d models, and treat the crust
as a single homogeneous layer.  Variation in thermal
conductivity with depth is generally treated through
the adoption of a column-averaged value.   Choosing
an average thermal conductivity for the crust of Mars
may be too simple an approach to make accurate
predictions on the depth to melting for water ice,
especially if low thermal conductivity layers are
present.

The effect of a low thermal conductivity layer on
the thermal gradient and depth to melting was
demonstrated by Mellon and Phillips in the context of
a possible explanation for young gulley landforms on
Mars [1]. The implications of low thermal
conductivity layers on theoretical calculations of the
depth to melting for water ice on Mars were also
briefly discussed in Urquhart and Gulick [2].  Here
we show why the consideration of the presence of
low conductivity layers is important in calculations of
the potential depth of a Martian water table.

Thermal Conductivity and the Geothermal
Gradient:  Geothermal gradients resulting from
geothermal heating are calculated using Fourier’s law
of heat conduction,
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where T is the subsurface temperature at depth d, Q is
the geothermal heat flow out of the Martian interior
and k is the thermal conductivity. Equation 1 assumes
a homogenous layer of crustal material in terms of
thermal conductivity.  For the crust of Mars, like that
of the Earth, vertical homogeneity is certainly more
realistic than a single idealized homogenous layer.
The usual way modelers have approached this
problem in the past (including the author) is through
the adoption of a value for the thermal conductivity
of the Martian crust that is consistent with basaltic
rock and ice cemented soil of 2.0 W/m-K to 2.8
W/m-K [2,3,4], with 2.0 W/m-K.   In this case,
Equation 1 becomes:
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where kca  is  column averaged thermal conductivity.
This approach works reasonably well for a series of
layers with similar thermal conductivities, but not
when low thermal conductivity layers are present.  If
the variation in thermal conductivity is known or can
be approximated using a simple function then
Equation 1 integrates as:
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where T is the temperature at a given depth, Ts is the
average surface temperature.   Equation 3 is useful in
the case of thermal conductivity variation due to
compaction with depth, for example. In many cases,
however, a simple function may not be appropriate.
Another approach is to treat the subsurface as a series
of homogenous layers of varying thermal
conductivity and calculate the effective thermal
conductivity of the crustal column based on the
values of individual layers.  The thermal gradient for
each layer may then be treated independently, or a
column averaged thermal conductivity may be used.

     Impact on the Thermal Gradient of Adding
Thermal Conductors in Series: For a series of
homogeneous layers, each with different layers of
thermal conductivity, the bulk thermal conductivity
will differ from the average value. Each of these
conductors is acting in series.  In a manner analogous
to an electrical conductivities, the total thermal
conductivity of these layers, ktotal add as:
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As layers (thermal resistors) are added, ktotal

increases.  In the calculation of a column averaged
value to be included in Equation 2, the thickness of
each layer must also be taken into consideration.
Using Equation 4, it is clear the lowest thermal
conductivity layers will dominate the total
conductance of a crustal column.  Just as in an
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electrical series circuit, if one high resistance (low
conductivity) component is present, the total
resistance will be significantly raised.  When
variation over individual layers is considered over the
column in the calculation of column averaged
thermal conductivity, the low thermal conductivity
layers will also tend to dominate.
    The possible values for the thermal conductivity of
typical crustal materials in the thin Martian
atmosphere varies over two orders of magnitude [5],
with dry dust and soil on one end of the scale and ice-
cemented soil and solid rock on the other. Mellon and
Phillips used a value for a 100 m thick dry soil layer
of 0.045 W/m-K [1], which is consistent with
laboratory measurements of thermal conductivity of
particulate materials made under Martian conditions
[5].  Let us assume that such a layer is present in a
column of crust 1 km m thick, with the remainder of
layers having a thermal conductivity equal to a
typically adopted value of 2.0 W/m-K.   If we were to
simply average the thermal conductivity over the
length of the column, the value would be kca = 1.8
W/m-K.  However, if we treat our layers as
conductors in series, kca = 0.37 W/m-K.   If the low
thermal conductivity layer is thinned to a mere 10 m
(1/100th of the total column thickness), the effective
thermal conductivity for 1 km column is still
significantly affected, with kca = 1.4 W/m-K.
      Of course, layers of dense rock or saturated ice-
cemented soils are also likely to be present in the
subsurface.  However, these layers will have less of
an impact on kca than will their high k counter parts.
Adding a layer of k = 2.8 W/m-K yields has no
noticeable impact when the layer represents 1/100th

of the column thickness, and only raises kca by a mere
0.06 W/m-K for a layer 1/10th of the column
thickness.  Including both high and low thermal
conductivity layers, each equal to 1/10th of the total
column thickness, raises kca by less than 0.01 W/m-k
over the case with only the low thermal conductivity
layer.

 The impact of low thermal conductivity layers
can be seen in Figure 1.  Here a moderate heat flow
value of Q = 30 mW/m2 and a surface temperature of
200 K are used for the purposes of illustrating the
effect of different values of thermal conductivity on
the depth to melting.  (The vertical dotted line marks
a temperature of 273 K.) As can be seen in Equation
1, higher thermal conductivities result in lower
thermal gradients.

  Discussion: When low thermal conductivity layers
are present in a crustal column, they can easily
dominate the column averaged thermal conductivity

Figure 1: A comparison of the depth to melting at the
equator for values of column averaged thermal
conductivity.  The dashed line b  represents the
thermal gradient for a typically adopted value of 2.0
W/m-K.  Line a represents a slightly higher value for
kca when a 100m layer of k = 2.8 W/m-K is included.
Line c is for the case where a very thin (10 m) low k
layer is present, resulting in kca = 1.4 W/m-K. Line e
represents the thermal gradient when a 100 m thick
layer of k = 0.045 W/m-K resulting in
kca = 0.37 W/m-K, and is almost indistinguishable
from line d , which includes both high and low
thermal conductivity layers.

and the resulting column averaged thermal gradient.
The model presented here is itself an extremely
simplistic 1-d approach, and is intended only to
illustrate the dramatic effect low thermal conductivity
layers can have on subsurface temperatures.  Low
thermal conductivity layers can be expected to occur
at the surface in equatorial low latitude regions.  In
such cases, these layers will also affect the upper
thermal boundary condition. Here we have
considered only the impact of variation in thermal
conductivity with depth on the column averaged
thermal conductivity and the thermal gradient
assuming a fixed surface temperature.
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