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At a Lindblad resonance in an optically
thin, non-interacting disk of particles, the particles
librate, and so too do their angular momenta. Asa
result, the cumulative torque from the disk
eventually decays to zero due to phase mixing of
the particles [1]. Here we show that a similar
behavior is manifested in the horseshoe orbit zone.
Exchange of angular momentum between particles
and perturber causes the well-known horseshoe
behavior for nearby particles and a drag on the
orbit of the perturber [2-4]. Using a simple
streamline model, with i(0) designating the inner
(outer) leg of the horseshoe trajectory, the torque
for an individual streamline can be written [4],

8T = »B,|Q- Q |6r (0,/B,- o/B)roQ,- Q) (1)

The total torque is found by summing over all
streamlines. Integrating out to the horseshoe zone
edge, the initial cumulative torque is [4]

d In(o/B)
d Inr

where w is the zone half-width normalized to 7,
Q(r) and Q_ are the mean motions of a particle and
the secondary, o(r) is the surface density of the
diskand 4 = (#/2)dVrdr, B = (2r) 1d(r?Q)/dr
are QOort constants.

The torque described by egn (2) is only

T = 40r41A[Bw4( ()
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Figure 1. (a) The torque saturation function due to
phase mixing of streamlines. (b) The normalized
angular momentum exchanged between the perturber
and disk. The dashed curves are effective secular
portions using S = 1whenx <land S, = (27)7*
when x > V4.

temporary. Since horseshoe orbits leading and
trailing the secondary are connected, a particle
initially interior to the perturber and approaching
from the rear will be turned back along an exterior
path. In a time P/2, where P(x) ~ 2m/x|A4]1s the
horseshoe libration period and x is the normalized
distance to the perturber, this particle will re-
encounter the secondary approaching from the
front and suffer the reverse fate. Thus, 8T will
undergo sign reversals at intervals At = P /2. To
model this, a step function €(2#/P) = £1 can be
introduced into eqn (1) that turns positive
(negative) whenever 2t/P = n, where n 1s an even
(odd) integer. Since the outermost streamlines
have the shortest libration periods, the position of
the n™ reversal, x, = w[nP(w)/2t], propagates
inward with time. In terms of a dimensionless
time variable, v = 2¢/P(w), the width of an
annulus, x, , - x, = Ax = w/t, narrows as the
number of annuli increases. Since positive and
negative annuli oppose each other, the torque
decays as this mutual interference becomes more
complete.
We define a saturation function,

STy = 2" (e ddx ?)
wh
to be used as a multiplier of eqn (2):
T(t) - S(t)T. Fourier decomposing the step
function,

e(t,x) = %Eoddi—sin(nM[xt)

and then integrating eqn (3) gives

s = Ox Lo 2 - 8 Lsingumn)
n n\ (nmt? (nmr)t
- [ Lo cos(nwt)].
() (nmr)’

This expression rapidly converges (in order) and
is shown in Fig. la. As 7 » 1, S(z) -~
- 4t (/7 pn Pcos(nmr)]; the bracketed
quantity is simply the Fourier representation of a
sawtooth function of amplitude 2.

The angular momentum exchanged with
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the perturber is obtained by a time integration of
the torque: AL = L(t)T-P(w)/2, where

o . 1e6 1.1
d(v) = [(S(Dydr = = ;{Eodd;[g
(L .2 ] sin(nmt) - cos(nnt)]
nnT  (nmr)® (nmT)

and is plotted in Fig 1b. This quantity quickly
approaches a limiting value,
(=) = (16/3)n 2% ,(1/n*) = 2/3. The total
angular momentum exchanged with the perturber
as t - o is thus

AL = §n0r48w3(

dln(o/B))
; amiomBl|

dinr

Atadistancer, = r(1+x) outside the perturber’s
orbit, the density

o(r,b) = %(00+ o) + %e(x,t)(oo— 0,)

jumps between o0 (r ) ando/(r,) at intervals
P(x)/2 as the streamline’s original inner and outer
legs are repeatedly exchanged. Here, 6,'(r,) is the
surface density of initially interior particles after
encounter has perturbed them to the outside track.
This is not in general the original density, o ().
To see this, we apply the constraint that the mass
flux remains unchanged as one follows a particle
along the streamline so that
F = o(r)r|Q-Qlor, = o/(r)r |Q,- Qlbr,
Particles from opposite edges of a given
streamline have Jacobi constants that differ
by [8J] = Or|dJidr| = 2rB|Q - Q|ér [4]. This
difference must persist after encounter, which
allows us to deduce the change in streamline width
going from one leg of the horseshoe trajectory to
the other. Thisimplies that 6,'(r ) = ofr)(B,/B).
Eqn (4) can be averaged over some radial
scale, d < w, neglecting slow changes ino_ and
o

i 2
0= cli 72 ey dx = %(o; 67+ %D(x,r)(oof ')

where

D(x,T) = 8§ wi.l

~Cs Eodd#sin(nnrx/w)sin(nﬂ:rd/Zw).
If © is small enough that 8, = nntd/2w < 1for n
up to some N >> 1, the first n < N terms of the

quantity, D(x, 1), are approximately
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Figure 2. Averaged surface density over a radial
interval d as a function of time.

iE’;fddl sin(nmtx/w) = €(x,T)
i n

i.e., the step function is nearly regenerated.
However, as 1 increases, the value of N decreases
until for t > w/d, 8, > O(1) for all n. Past this
point, D(x, T) exhibits a beat pattern with nodes at
intervals of At = 2(w/d) and a magnitude that
decays as 1/t as shown in figure 2. Hence, the
ring becomes mixed on a length scale ¢ in a time
T, ~ O(w/d) andfor T » t,,thedensityaveraged
over the scale d approaches
w0, ~ (122)(o,+0,) = (1/2)(6,+0B,/B). The
complimentary average for the interior density,

©), 1is obtained by reversing subscripts.
Consequently,

o%_ @ _ife o

B, B, 2\ B, B,

and after mixing, the quantity, ©v/B, assumes the
same value on both interior and exterior legs of
each horseshoe orbit and the torque vanishes.

Complete saturation of the torque can be
prevented by a finite viscosity, v [5]. If the
viscous timescale T, ~ w/v < P(w), diffusion
from a surrounding disk will try to reestablish the
global gradient, and the torque decays to a non-
zero value that depends on the ratio of these time
scales [6].
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