Porco C. Spitale J. Mitchell C. Dones L. Ingersoll A. West R.

Enceladus’ Jets: Particle Characteristics, Surface Source Locations, Temporal Variability, and Correlations with Thermal Hot Spots [#2310]
This work reports the first careful attempt to determine the properties of Enceladus’ jets — i.e., particle size distributions, altitude profiles, source locations, temporal variability, etc. — in Cassini ISS images, and to correlate the source locations with the hot spots measured by Cassini CIRS.

Distribution of Icy Particles Across Enceladus’ Surface as Derived from Cassini-VIMS Measurements [#1747]
We measured the band depths of water ice absorptions at 1.04, 1.25, 1.5 and 2.5 µm.

Hurford T. A. Helfenstein P. Greenberg R. Hoppa G. V.

A Cycloid-like Rift Near Enceladus’ South Pole: Europa-style Production by Tidal Stress [#1844]
One prominent rift on Enceladus’ south pole consists of arcuate segments, resembling the shape of cycloidal cracks on Europa. We explore the possibility that a similar mechanism may have caused the cracking on Enceladus as on Europa.

Titan’s Crater Lakes: Caldera vs. Karst [#2064]
We discuss the origin of sub-circular, steep-sided, lake-containing depressions on Titan. Neither karst/thermokarst nor caldera interpretations are ideal in explaining all observed lake depressions. We suggest that both processes may have occurred.

Wood C. A. Lorenz R. Radebaugh J.

How Titan Works — A Radar Perspective [#2118]
Titan has a young surface with diverse landforms. We speculate that the surface may date only back a half billion years to the time of a thickening of the crust modelled by Tobie, Lunine and Sotin (2006). The radar bright areas appear to the oldest preserved terrain.