
ISOTOPIC EQUILIBRATION OF EARTH’S MANTLE AND THE MOON SUBSEQUENT TO THE 
GIANT IMPACT?  A. Zindler and S. B. Jacobsen, Department of Earth and Planetary Sciences, Harvard Universi-
ty, Cambridge, MA  02138 (zindler@eps.harvard.edu). 

 
Introduction:  Striking, mass-independent oxygen 

[1], chromium [2], and tungsten [3] isotopic similari-
ties between the Earth’s mantle and the Moon, which 
are readily distinguished from most other Solar System 
materials, provide a critical but troublesome test for 
models of lunar formation.  In the context of the giant 
impact theory, the leading hypothesis for the origin of 
the Moon [e.g., 4, 5], these isotopic similarities were 
once thought to document formation of both the Earth 
and the impactor at similar heliocentric distances in an 
isotopically zoned solar nebula.  However, current 
models suggest that terrestrial planet formation culmi-
nates with a period of major impacts between growing 
planets and planetary embryos, thought to sample a 
large radial zone of the nebula extending to beyond the 
radius of Mars [6, 7].  The giant impactor that formed 
the Moon, therefore, is unlikely to have originated at 
one AU, or to have had isotopic characteristics indis-
tinguishable from the proto-Earth.  Suggestions that 
the Moon formed from material ejected from the 
Earth’s mantle by the impactor [11], or from mass-
relative proportions of Earth and impactor, are incom-
patible with SPH models which overwhelmingly pre-
dict that 80% or more of the protolunar material origi-
nates from the impactor [see 5 and references therein].  
In view of these considerations, one must conclude 
either that significant aspects of current models are in 
need of revision, or attribute important aspects of the 
Earth-Moon system to a rather large coincidence. 

A Novel Approach:  Pahlevan and Stevenson [8] 
explored a very different potential solution to this 
problem:  that the Earth and protolunar disk, largely 
molten but isotopically dissimilar in the immediate 
aftermath of the giant impact, were able to achieve 
oxygen isotopic equilibrium via exchange of oxygen 
through the shared, hot, dense, silicate vapor atmos-
phere that prevailed for a short time between the im-
pact and lunar accretion [5].  Subject to radiative cool-
ing with an effective photospheric temperature of 
2000°K [9], Pahlevan and Stevenson [8] argue that the 
cooling timescale for the disk material, which essen-
tially defines the time available for equilibration, can 
be as long as 102 to 103 y (as compared to 3×103 y for 
the Earth).  In this context, they construct semiquantit-
ative but compelling arguments that convection within 
the Earth, disk and atmosphere, as well as the liquid-
vapor exchange process, proceed at rates which are 
sufficient to permit the equilibration to occur.  They 
conclude by noting that the limiting step is likely radial 
mixing through the atmosphere of the disk, but that 

this, too, is sufficiently rapid to allow the Earth-disk 
isotopic equilibration to take place.   

Oxygen Isotope Mixing:  As Pahlevan and Ste-
venson [8] did not quantitatively explore the timescale 
for oxygen isotope mixing in the context of their mod-
el, we decided to do this in an effort to further evaluate 
the viability of the process.  Using the boundary condi-
tions of Pahlevan and Stevenson [8], we explored the 
oxygen isotope evolution of the system as a three-
reservoir mixing problem. We assumed that each of the 
reservoirs, Earth, disk and vapor atmosphere, remained 
homogeneous due to vigorous internal convection. The 
disk comprises approximately 80% melt and 20% sili-
cate vapor. Earth-vapor and disk-vapor fluxes were 
scaled to one another according to the ratio of the sur-
face area of the Earth to that of a 2-lunar-mass disk 
centered on the Roche limit of the Earth-Moon system 
(~1:11).  For this case, the magnitude of the melt-vapor 
fluxes per unit area are the same for the disk and the 
Earth.  The initial Earth-disk discrepancy in Δ17O is 
taken as ~0.307‰, the approximate magnitude of the 
mean difference between Earth and Mars, and the tar-
get value for equilibration is taken as 0.005‰ (the lev-
el at which analytical differentiation becomes diffi-
cult). 

With the ratio of the two fluxes fixed, the critical 
parameter becomes the total amount of material ex-
changed between the Earth and the vapor or the disk 
and the vapor over the course of the equilibration time 
period.  For the chosen parameters, the target result is 
obtained when the total disk-vapor exchange is about 
1.4 Earth masses (see Fig. 2).  

Discussion:  Pahlevan and Stevenson [8] argue that 
the melt-vapor exchange can be modeled as a continual 
rainout of vapor condensate that forms in response to 
radiative cooling at the top of the atmosphere.   The 
timescale to condense the mass of the vapor and advect 
its composition to the molten disk is about 2 y for the 
present set of model parameters [8].  This is equivalent 
to a melt-vapor flux of ~0.1 kg m-2 s-1.  At this rate, 
~500 y is required to attain oxygen isotope equilibrium 
between the disk and the Earth  (Fig. 1).  As the cool-
ing timescale of the disk was estimated to be 102 to 103 
y [8],  it becomes clear that this timescale is indeed 
very important in assessing the viability of the model. 

Cooling of the model disk would occur on a time-
scale of only a few years were it not for the liberation 
of thermal energy due to viscous dissipation during 
spreading [9].  In fact, the energy released per unit 
mass substantially exceeds the latent heat of vaporiza-
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