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Introduction:  The spin pole of the Moon is tidally 

damped. As a result, it currently occupies a Cassini 
state [1,2]. That is, the obliquity is set to a value at 
which the spin and orbit poles remain coplanar with 
the ecliptic pole, during each precession cycle. The 
current damped obliquity is only 1.6 degrees, which is 
small enough that some regions inside polar craters 
are permanently shadowed [3,4,5]. During the Moon’s 
orbital evolution away from Earth, the spin pole tran-
sitioned from one Cassini state to another, and went 
through a brief period of very high obliquity [6]. In 
order to model the near-surface temperature variations 
during these times of high obliquity, and determine 
the fate of any volatiles trapped there, we first need to 
develop improved models this dynamic spin pole tran-
sition.  

We will briefly recount the main features of the 
orbit and spin evolution of the Moon, as they pertain 
to this episode of high obliquity. The main focus of 
our study is the dependence of the spin pole transition 
upon variation in moments of inertia of the Moon dur-
ing the transition. 

Orbit precession:  The main driver in this story is 
tidal energy dissipation within Earth’s oceans. This 
has caused the Earth-Moon orbit to increase in size 
[7,8,9]. There are associated variations in orbital ec-
centricity and inclination, but the main effect of inter-
est here is a significant change in the rate of orbit 
plane precession. The orbit plane precesses in re-
sponse to two torques, one from the oblate Earth and 
another from the Sun. The solar torque, which makes 
the orbit pole precess about the ecliptic pole, increases 
in strength with increasing distance from Earth. The 
oblate figure torque, which makes the orbit pole pre-
cess about Earth’s spin pole, decreases with increasing 
distance. The current precession period is 18.6 years, 
but it reached a maximum value of roughly 80 years, 
at the hand-off from Earth-control to Sun-control, at 
roughly 1/3 the present Earth-Moon distance [7,8]. 
See Figure 1, below. 

Spin precession:  The lunar spin pole precesses at 
a rate which depends both on distance from Earth, and 
on the difference between the polar and equatorial 
moments of inertia. If the spin pole and orbit pole unit 
vectors are denoted ŝ  and n̂ , then the spin pole pre-
cesses according to 

 ( )( )( )nssn
dt

sd
ˆˆˆˆ

ˆ
×+⋅= βα  (1) 

where the rate constants a and b are proportional to 
the orbital mean motion  n, and are given explicitly  
by 
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where the principal moments of inertia are A < B < C. 
Early in its history, departures from spherical 

symmetry in the lunar mass distribution were close to 
hydrostatic [10]. A more rapid rotation would make 
the Moon more oblate, while a larger imposed tidal 
potential would tend make it a prolate spheroid, with 
symmetry axis aligned with the Earth-direction.  

It is not known when, in its thermal and orbital 
history, the Moon started departing from hydrostatic 
equilibrium, but it is known that the current degree 
two gravity field of the Moon is far from hydrostatic 
equilibrium [11,12,13]. 

Gravity models:  The principal moments of iner-
tia are related to the two non-zero terms (J2 and C2,2) 
in the spherical harmonic expansion of the degree two 
gravity field via 
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Current values are [14] J2 = (203.67 ≤ 0.07) ä 10-6, 
and C2,2 = (22.19 ≤ 0.01) ä 10-6. In contrast, the hy-
drostatic values are J2 = (9.38) ä 10-6 and C2,2 = (2.83) 
ä 10-6. 

We consider several models for past variations in 
the moment differences. In the simplest model (con-
stant value), we just assume that the current values 
have always been applicable. In the next most com-
plex model (constant bias), we assume that the hydros-
tatic response has always been present, but that it is 
augmented by a value which makes the sum equal to 
the currently observed values. We also include models 
in which the augmentations, or bias values, are either 
linear or quadratic functions of Earth-Moon distance. 

In each case, the rotational potential is a function 
of the Earth-Moon distance, as we assume synchron-
ous rotation throughout. The tidal potential, in con-
trast, is a function of both the Earth-Moon distance 
and the mean obliquity. 
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Obliquity variation:  To occupy a Cassini state, 
the obliquity must be such that the angular rate of spin 
pole precession, and length of the precessional path, 
are adjusted so as to match the orbit pole precession 
period. The criterion for steady co-precession of a tri-
axial synchronous rotator can be written as [1,2,6] 

 ( ) ]sin[]cos[]sin[ εβεαεη +=−i  (6) 

where h is orbit pole precession rate, ε  is obliquity, 
and i is orbital inclination. 

This equation has either two or four real roots 
when solved for obliquity, depending upon the values 
of the input parameters (a, b, h, i). At an early point 
in lunar orbital evolution, the parameters were such as 
to allow four solutions. The Moon’s spin pole presum-
ably first damped into the lowest obliquity Cassini 
state, known as state S1. However, as the orbit 
evolved, two of the Cassini states (S1 and S4) merged 
and disappeared. The Moon then transitioned to state 
S2, where it is today. Figure 2 illustrates these obliqui-
ty variations, under the simplifying assumption that 
the gravity field remained constant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We will present obliquity histories in which the 
gravity field follows the more realistic (but still some-
what contrived) recipes described above. 

 
References:  [1] Colombo, G. (1966) AJ, 71, 337-

349. [2] Peale S.J. (1969) AJ, 74, 483-490. 
[3] Watson, K. et al. (1961) JGR, 66, 3033-3040. 
[4] Arnold J.R. (1979) JGR, 5659-5668. [5] Vasavada 
A.R. et al., (1999) Icarus, 141, 179-193. [6] Ward 
W.R.. (1975) Science, 189, 377-379. [7] Goldreich, P. 
(1966) Rev. Geophys., 4, 411-435. [8] Touma A. and 
Wisdom J. (1994).AJ, 108, 1943-1961. [9] Bills B. G. 
and Ray R.D. (1999) GRL, 26, 3045-3048. 
[10] Hubbard W.B. and Anderson J.D. (1978) Icarus, 
33, 336-341. [11] Jeffreys H. (1937), MNRAS-GS, 4, 
1-13, [12] Lambeck K. and Pullan S. (1980), PEPI, 
22, 29-35. [13] Garrick-Bethell I. et al. (2006) 
Science, 313, 652-655. [14] Zuber M.T. et al. (1994) 
Science, 266, 1839-1843.  

1752.pdf41st Lunar and Planetary Science Conference (2010)


