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Introduction: Global maps of lunar geochemistry 

and mineralogy have a number of applications in  ex-
amining the magma ocean hypothesis on the origin and 
evolution of lunar crust and mantle structures, getting 
insight into the characteristic of lunar mantle, investi-
gating basaltic volcanism, impact crater/basin struc-
tures and ejecta emplacement, and lunar soil evolution 
and mixing mechanisms, and planning future lunar 
missions (e.g. landing site selection). 

Commonly used methods for estimating the abun-
dance of lunar soil minerals and chemicals from labor-
atory or remotely measured spectral reflectance in-
clude empirical methods using spectral parameters [1-
3], multivariate statistical analysis [4-9], the Modified 
Gaussian Model (MGM) [10] and radiative transfer 
modeling [11-13].  The use of empirical methods has 
been focused on mapping lunar soil FeO and TiO2; the 
MGM requires well defined spectral absorption bands 
that are represented well by hyperspectral data and 
radiative transfer  modeling is computational expen-
sive when applied to high spatial resolution hyper- and 
multi-spectral images.  In contrast, multivariate statis-
tical analysis has the capability of mapping lunar soil 
mineralogy with either hyperspectral or multispectral 
images in a timely efficient manner.  Here we intro-
duce an approach to mapping major lunar minerals 
with Clementine ultraviolet (UV), visible (VIS) and 
near infrared (NIR) multispectral images, in which 
genetic algorithms (GA) and partial least squares 
(PLS) regression are jointly used.  The effectiveness of 
GA-PLS was demonstrated with the Clementine UV-
VIS-NIR image of a lunar region including Mare Sere-
nitatis, Mare Transquillitatis, Mare Crisium and Mare 
Nectaris and thus showing a variety of different mare 
soils. 

Methods: Clementine UV-VIS-NIR data at 1 km 
spatial resolution were used to generate the mineral 
maps of the example area.  While Clementine NIR data 
have six spectral bands centered at 1.1, 1.25, 1.5, 2.0, 
2.6, 2.78 μm, the first four bands of the Clementine 
NIR dataset were analyzed together with the Clemen-
tine UVVIS data considering the effect of thermal 
emission on the last two NIR bands.     

    Unlike hyperspectral data (e.g. M3), multispec-
tral data have a limited number of spectral bands and 
lack detailed spectrally diagnostic characteristics.  To 
overcome this limitation, we used Clementine UV-
VIS-NIR spectral band ratios and curvatures as addi-
tional input variables for the GA-PLS model together 
with the original spectral bands.  Some of band ratios 
are "key ratio" related to mafic mineral abundances, 

while "spectral curvature" is linked to absorption band 
shape which can be distinguished between low- and 
high-Ca pyroxene and olivine [14].  In previous studies 
[4-6], only predetermined ratios and curvatures were 
used; here the potential of all possible, distinct band 
ratios (i.e., the Clementine 0.415/0.750 µm ratio is not 
distinctive from the ratio of 0.750/0.415 µm) and band 
curvatures as additional spectral variables for mapping 
lunar soil composition were examined. 

A simple PLS model consists of two outer relations 
and one inner relation.  The two outer relations result 
from eigenstructure decompositions of both the matrix 
containing explanatory variables (i. e., spectral bands) 
and the matrix containing response variables (i. e., 
lunar mineral abundance),  while the inner relation 
links the resultant score matrices from the two eigen-
structure decompositions generating the outer relations 
[15].  Let both X [n×m] represent a explanatory matrix, 
the first outer relation is derived by applying principal 
component analysis (PCA) to X, resulting in the score 
matrix T [n×a] and the loading matrix P' [a×m] plus 
an error matrix E [n×m], i.e. X = TP’ + E  Similarly, 
the second outer relation for Y [n×p] standing for a 
response variable matrix  can be  derived by decom-
posing Y into the score matrix U [n×a] and the loading 
matrix Q’ [a×p] and the error term F [n×p], i.e. Y = 
UQ’ + F.  The prime represents matrix transpose.  The 
inner relation U = BT is a multiple linear regression 
between the score matrices U and T in which B is an 
n×n regression coefficient matrix determined via least 
square minimization.  The goal of the PLS model is to 
minimize the norm of F while maximizing the cova-
riance between X and Y by the inner relation.  Because 
the above-mentioned two separate PCAs' approach to 
deviating PLS factors is not the best possible and re-
sults in a weak correlation for the inner relation, a me-
thod resulting in a strong inner relation between T and 
U was used [9, 15]. 

Genetic algorithms (GA) are a computer model that 
simulates natural selection [16].  A genetic algorithm 
includes at least five components: encoding, popula-
tion initialization, individual selection, crossover and 
mutation [16].  For encoding a genetic algorithm works 
with a population of randomly generated chromosomes 
(i.e. candidate solution) in population initialization, 
and each chromosome is formed by as many “bits” as 
the number of spectral bands, and “zeros’  or “ones” 
are assigned to the bits of that chromosome.  A zero bit 
indicates the band is not selected and an one bit means 
otherwise.  Crossover is the process of reproducing 
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new offspring by exchanging genes between two re-
producing chromosomes, and then mutation follows 
and simulates the gene change of a chromosome due to 
the random disturbance.  Because GA is well suitable 
for generating a subset of spectral bands and removing 
spectral bands that are insensitive to response variables 
[17]. 

We used the LSCC data resampled into the Cle-
mentine UV-VIS-NIR spectral resolution to build the 
spectral-mineral models, in which 57 LSCC samples 
from particle size groups: 45-20, 20-10, <10 µm were 
used in calibration. 

 

 
Figure 1. A map shows the abundance of pyro.(R), oliv.(G) and 
ilmen.(B) in the region including Mare Serenitatis, Mare Tranquilli-
tatis, Mare Crisium, Mare Fecunditatis and Mare Nectaris. 

Results and Discussion:  GA-PLS resulted in a 
high coefficient of determination for agglutinate (R2= 
0.63), pyroxene (R2= 0.81), plagioclase (R2= 0.85), 
ilmenite (R2= 0.72), olivine (R2= 0.48), but a low cor-
relation for volcanic glass (R2= 0.39).  These results 
are consistent with those reported in our previous work 
[7].  Poor correlations for olivine and volcanic glass 
may stem from a narrow range of their abundances and 
the fact that the LSCC samples are not representative.   
The calibrated GA-PLS models were applied to the 
Clementine UV-VIS-NIR of the example area for pro-
ducing the mineral maps of this area and a color com-
posite  image showing pyroxene as red, olivine as 
green and ilmenite as blue is presented in Figure 1. 

While Figure 1 shows significant amounts of noise 
due to mosaic lines in horizontal and vertical direc-
tions, the map still reflects the differences in composi-
tional pattern among these maria and within a single 
mare.  For example, Mare Tranquillitatis shows more 
olivine and ilmenite than Mare Crisium, and Mare Se-
renitatis shows the lowest olivine and ilmenite.  High 
olivine and ilmenite areas also include the Apollo 17 
landing area and part of Mare Tranquillitatis close to 
the boundary between itself and Mare Serenitatis. 

However, caution must be taken to explain the col-
or pattern in the highland region around these maria 
and highland contaminated maria.  For example, Mare 
Fecunditatis shows a high amount of ilmenite, which 
seems higher than Mare Serenitatis and reaches the 
same level as that of Mare Transquillitatis.  This com-
positional pattern may not be true in reality.  Examin-
ing the correlation between measured and modeled 
ilmenite abundances indicated that the model yielded 
large errors when modeling very low-Ti and low-Ti 
mare and highland samples because of overestimation.  
This is why highland regions around the maria show 
blue or purple colors.  This is due to the highland con-
tamination caused by Langrenus so that Mare Fecundi-
tatis seems to have a high amount of ilmenite.  The 
reason also explains the purple color of Mare Nectaris.         

Conclusions:  Application of GA-PLS does show 
some success in mapping lunar major minerals as 
demonstrated by high coefficients of determination and 
the mineral maps of the example area (Figure 1).  Two 
issues to be addressed in the further work are: 1) the 
type of noise shown in Figure 1 needs to be compen-
sated and 2) the correlations for olivine and volcanic 
glass need to be improved.  Minimum noise transform 
(MNF) or band modeling/fitting being conducted be-
fore GA-PLS modeling could be two optional proce-
dures for removing the noise.  Additional calibration 
spectra are needed to improve the prediction of olivine, 
volcanic glass and ilmenite in low-Ti samples.  We 
propose to use the Hapke's forward model to expand 
the range of the LSCC sample so that olivine-rich ba-
salts, and magnesian highland samples (e.g. troctolites) 
are included in the GA-PLS calibration dataset [18].  
The GA-PLS method can be easily adapted for map-
ping the mineralogy of a planetary body with hyper-
spectral images acquired by the current and future mis-
sions to the Moon and Mercury. 
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