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Introduction: Identifying basalts in surface or sub-

surface deposits is fundamental for our understanding 
of the 2D and 3D distribution of volcanic rocks on the 
Moon. For example, cryptomare studies rely on identi-
fying basalt-excavating dark-haloed craters [1,2].  

Fresh basalts are often identified using spectral stu-
dies [e.g., 2, 3]. Individual spectra are extracted from 
pixels of interest, but with millions of data pixels in a 
study area, this can be time consuming. Users must 
choose which pixels to consider, thus the best spectra 
may not be found and spectrally interesting areas that 
are otherwise indistinct, may be overlooked.  

So motivated, we developed an empirical technique 
for identifying fresh basalt spectra in Clementine data.  

Study Area: Our study area is the region west of 
Mare Humorum (Figure 1). Previous work in this area 
[2, 4] provides a good reference for judging the accu-
racy of our results. The data consists of full resolution 
(303.23 pixels/km) Clementine UVVIS multispectral 
data and Lunar Orbiter (LO) photographic image data 
(512 pixels/km), downloaded from [5]. Weight% FeO 
values [5] were calculated from the Clementine data. 

 
Figure 1: LO Image of the Humorum study area, with Lucey 
Iron [6] overlay. Red boxes show locations of the two train-
ing areas (Figure 4). White box gives location of Figure 5. 
 

Method: In Clementine data, fresh basalt spectra 
have specific characteristics (Figure 2). Segment A has 
a positive slope. Segment B has a negative slope, con-
tributing to an obvious band depth. The transition be-
tween segments B, C, and D is smoothly curved.  

To quantify significant parameters for fresh basalt 
spectra, we selected two vastly different training sets 
(locations shown in Fig 1). Training set A is located in 

highland with relatively low iron content throughout. 
Training set B contains a mare/highland boundary and 
has a large range of iron values. 

 
Figure 2: Ideal basalt spectra showing band depth, place-
ment of the 4 segments, and the model relationship between 
segments B, C, and D. 
 

Two apriori assumptions were made: 1) Band depth 
should be high, to correspond to fresh materials and for 
easier identification, 2) Segment B slope must be nega-
tive, since positive B slopes indicate highland spectra. 

Band depth is quantified as (R750 – R950)/(R750-
R415), where R750 is the 750 nm band reflectance, 
etc. For the initial training, only spectra with band 
depth >= 0.2 were considered. This resulted in 17,000 
spectra, which were normalized and plotted, then vi-
sually analyzed to identify fresh basalt spectra.  

Visual sorting can be subjective Figure 3 shows 
spectra ranging from ideal basalt to “non-basalt”. Ideal 
and “non-basalt” spectra are easily classified. Howev-
er, the boundary between these is less clear. This ambi-
guity makes consistency in visual sorting challenging. 
Our choice of a large training set attempts to compen-
sate for this ambiguity with statistics of large numbers. 

From our starting set of 17000 spectra, we identi-
fied over 13,000 basalt spectra. Their locations are 
plotted in Figure 4.  

 
Figure 3: Suite of normalized spectra, offset from each other 
by 0.005, ranging from ideal basalt to “non-basalt” spectra.  
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Figure 4: Training areas showing LO data with Lucey Iron 
overlay, and identified basalt spectra locations in red. 
 

Analysis: Classified spectra were analyzed to find 
characteristics common to basalt spectra, but absent in 
“non-basalt” spectra. We focused on quantifying rela-
tionships between the slopes of segments B, C, and D.  

Our 17,000 training spectra are modeled well by 
the first 2 parameters and bounds in Table 1. Applica-
tion of these parameters results in 1173 false positives 
and 437 false negatives (an error rate of roughly 10%). 
False positives (spectra incorrectly identified as ba-
salts) tend to fall in the ambiguous range between ideal 
and “non-basalt” spectra and so may have been mis-
classified in training. False negatives (spectra incor-
rectly classified as “non-basalts”) are much less ambi-
guous. Therefore, these parameters should give con-
servative estimates for the presence of fresh basalts. 
Table 1: List of empirical parameters and their max/min 
boundaries, used for identifying fresh basalt spectra in the 
Humorum study region. 

Parameter Equation 
Min 

Value 
Max 
Value 

BC Angle 
3(R950-R900) 
(R900-R750) 

-0.22 1.36 

CD Angle R1000-2R950-R900 0.0022 0.025 

B Slope 
(R900-R750) 

3 
- -0.0025 

Band Depth 
(R750-R950) 
(R750-R415) 

0.1 - 

  
To fine tune our algorithm, we applied the first 2 

parameters of Table 1 to the entire 574,402 point train-
ing data set. Spectra identified as basalts by the algo-
rithm were selectively surveyed and visually analyzed. 
Determining where basalt spectra can be realistic iden-
tified refined the bounds for the last 2 parameters.  

Results: The parameters of Table 1 were applied to 
the entire Mare Humorum full resolution Clementine 
UVVIS data set.  The results are encouraging. For the 
training areas, full run and training run results are self-
consistent; the full run found all basalt regions identi-
fied in training, and no new regions. Identified basalt 
spectra generally correspond to regions of high topo-

graphic slope, where fresh basalts may be exposed by 
mass wasting. Furthermore, the locations of identified 
basalts, and their absence, correlates well with our pre-
vious work in this region [5].  

There is significant potential for using these results 
in future work. In Figure 5, several previously unidenti-
fied dark-haloed craters are highlighted by basalt spec-
tra (yellow dots). Incipient dark-haloed craters (no iron 
signature in ejecta, but basalts on their slopes) are also 
identified. On one crater, streaks of basalt spectra on 
the outside flank (white arrow) suggest recent freshen-
ing, possibly due to a landslide or a boulder rolling 
down slope.  We envision using such results for future 
cryptomare and mare thickness analyses, as well as the 
study of other interesting phenomena that may be re-
vealed by this technique. 

 
Figure 5: Area in white box from Figure 1, with locations of 
basalt spectra (identified by Table 1 algorithm) shown in 
yellow. White arrow shows location of possible landslide. 
 

Conclusions: We developed a simple empirical 
method for identifying fresh basalt spectra in Clemen-
tine lunar data. This method works well in the Humo-
rum area of the Moon, identifying basalt spectra on the 
slopes of basalt-containing craters. Application to other 
areas of the Moon remains to be tested.  

Similar methods could be developed for the M3 and 
LRO data sets, when they are made available.  
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