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Introduction

One of the puzzles about the structure of asteroids and other
small bodies of the solar system is amount of internal void
space, as deduced from measurements of their bulk densities
compared to the mineral grain densities of their surfaces. In
many cases, void fractions up to 50% or more are inferred (Britt
and Consolmagno [1]). The question arises as to whether this
large void fraction is the result of large-scale internal structure
("macroporosity"), or small-scale grain-density effects("mi-
croporosity"). Here we present preliminary work on making
structural models of rubble piles in two and three dimensions.

Methodology

We use a penalty method for structural modeling: given a
configuration of (potentially overlapping) polygons (in 2D) or
polyhedra (in 3D), the positions and depths of intersections are
found using Minkowski summation and the configuration is
modified to minimize or eliminate overlaps. In effect a “penalty
force" is applied to overlapping objects in order to separate
them. The method is equivalent to “first order dynamics" (i.e.
non-inertial motion, ‘orF = mv) (cf. Erleben et al. 2005
[2]). Additionally, the center of the intersection is needed
for rotational displacements; this information must be found
separately, as the Minkowski sum does not provide it.

Figure 1: Left: 2 polygonsP (green) andQ (red). Right:
Minkowski sum ofP and−Q; becauseP andQ intersect, the
Minkowski sum includes the origin.

Collision detection is done using by a method using the
Minkowski sum operation. (In this case we actually want the
“difference”, as opposed to the sum, i.e. the sum of one object
and the negative of the other.) The Minkowski sumP⊕−Q of
an objectP and another objectQ is the pairwise difference of
all points (i, j) in Pi andQ j . Two polyhedra intersect if their
Minkowski sum (difference) encloses the origin. Minkowski
sums have two useful properties: 1) the Minkowski sum of
two convex polyhedra is itself convex, and 2) the minimum
distance of the sum polyhedron from the origin is the displace-
ment vector needed to separate the original polyhedra. The
first property implies that the Minkowski sum of two convex
polyhedra can be constructed using only the vertices of the
polyhedra; in that case a convex hull algorithm is required to
complete the construction of the sum.

Figure 2: 2D results: left, a Voronoi decomposition of a square
region. Right: Result of randomly perturbed configuration re-
laxation to a non-penetrating set.

Figure 3: 3D results: left, the result of a trial run with 1000
blocks of a Voronoi decomposition. Right: The ”shrink-
wrapped” polyhedron used to find the volume enclosed by the
blocks.

As noted, overlapping pairs are determined from Minkowski
sums that enclose the origin. For pairs that do overlap, displace-
ments and rotations are calculated that are intended to resolve
the overlap; if a given object is involved in multiple intersec-
tions, the sum of the displacements/rotations is accumulated.
The displacements and rotations are then applied and the proce-
dure is repeated, until (hopefully) an equilibrium is reached. A
central potential is also applied to bring the blocks into contact.

Results

Sample 2D results are shown in Fig 2: initial close-fitting
Voronoi decomposition polygonal sets are perturbed and re-
laxed to a configuration as shown. For two dimensional prob-
lems, the procedure appears to work well.

Some 3D results are shown in Fig 3, where the left panel
shows a rubble pile with 1000 blocks. The right panel shows
the "shrink-wrapped" pile: a 10242-face polyhedron has been
fitted in order to estimate the enclosed volume of the pile.
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Figure 4: 3D results: Several 100-body runs. Shown are aver-
age interpenetration distanceδ/L, total enclosed volume, and
void fractionε for various trials as a function of step number
in the calculations.
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Figure 5: 3D results: similar results for the 1000-body run
shown in Fig 3.

Figs 4 and 5 show the average interpenetration distance
δ/L, total volume (as measured by the shrink-wrap procedure,
and resulting void fractions, as a function of iteration step num-
ber n, for several 100 and 1000-block models. In these cases
we are interested primarily in the final configuration, as op-
posed the pseudo-dynamics of the intermediate steps. In Fig
4, we varied run parameters such as the degree of correction
applied per step (e.g. a “relaxation” parameter≪ 1 similar to
those often used in numerical algorithms for elliptic partial dif-
ferential equations, or similarly the amount of external forcing
potential used to draw the blocks into contact). Results were
somewhat mixed for 3D calculations. In general void fractions
ranging from 0 to 30% result from the calculation indicating
that in some cases a good deal of residual interpenetration re-
mains despite application of the procedure. We did not find
a set of simulation parameters that would guarantee minimal
interpenetration of the blocks at the end of the calculation.

Conclusion

Overall we have found that preliminary work is encouraging,
but ultimately not completely satisfactory at present. More de-
velopment is needed for three-dimensional modeling to provide
definite results. In particular, a more robust scheme would need
to be developed for 3D calculations, to deliver configurations
that have little interpenetration (i.e. block overlap), and do so
more efficiently. Further work is required, perhaps along the
lines of studies done of packing fractions of polyhedra suchas
the work discussed by Torquato and Jiao [3].
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