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Introduction: High-resolution near-infrared (IR)
observations of carbon monoxide (CO) gas enables
precise derivation of C and O isotope ratios toward
Solar-type protostars, and are powerful tools in fur-
thering our understanding of early Solar System chem-
istry (e.g. [1,2]). These data have been used to in-
vestigate several isotopic peculiarities, including the
[12C]/[13C] Solar-ISM discrepancy [3-9]), and the
oxygen isotope anomaly found in meteorites [10].
Thus far, high-resolution observations have revealed
significant heterogeneity in [12CO]/[13CO] toward a
set of low-mass protostars [11,12], and comparison of
gas-phase [12CO]/[13CO] ratios to CO ice abundance
toward a set of low-mass protostars [11,12] has ad-
vanced considerations of protostellar ice-gas partition-
ing [11-14]. Further, observational signatures of mass-
independent fractionation in oxygen isotopes toward
a protostellar disk [2] have lent support for CO self-
shielding on disk surfaces [15,16], and high-resolution
observations of 12C18O and 12C17O toward low-mass
protostars [11] have been used to support early Solar
System supernova enrichment [17,18].

Toward refining our view of spatial isotopic
variability for protostars dispersed in the same
star-forming cloud, and to expand the CO survey
comparing clouds, we present new results in Ophi-
uchus and an embedded binary system in Serpens. In
addition, our new observations of massive protostars
will hopefully shed light on phenomena in these
complex regions which may affect other isotopic
reservoirs (e.g. [19,20]).

Observations: Very high-resolution near-IR CO
spectra toward local, low-mass protostars were ob-
tained with the CRIRES spectrograph (R∼ 95, 000)
on the Very Large Telescope. Our new survey of
massive protostars utilizes the NIRSPEC spectrograph
(R∼ 25, 000) on the Keck Telescope. Figure 1 (top)
shows a portion of the fundamental bands (v = 1− 0)
for the embedded binary protostar, EC 90 (0,1) in
Serpens, observed with CRIRES; and (bottom) a por-
tion of the NIRSPEC spectrum for the massive pro-
tostar AFGL 2136 in the Juggler Nebula. Overtone
(v = 2− 0) spectra (not shown) were used for observ-
ing optically thin 12C16O lines. Total column densities
for each isotopologue were precisely determined using
the CRIRES spectral lines, and the carbon and oxygen
isotope ratios thereby derived (this method is described
in detail in [2,12]).
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Figure 1: (Top): Portion of the near-IR VLT-CRIRES CO
fundamental rovibrational bands toward the low-mass bi-
nary, EC 90 (Serpens); (Bottom): Portion of the Near-IR
Keck-NIRSPEC CO fundamental band toward the massive
protostar, AFGL 2136 (Juggler Nebula). Representative CO
isotopologue lines and ice features are marked.

Results and discussion: Significant range is found
in robust [12CO]/[13CO] (∼ 85 − 165), notably
between the 6 Ophiuchus targets (Figure 2). The
[12CO]/[13CO] for each of the components of the
binaries DoAr24E(0,1) [98 ± 1 and 102 ± 3] and
EC90(0,1) [130 ± 4 and 140 ± 16] are within error to
each other. The low-temperature ratio for VV CrA(N)
[127±2], not shown in Figure 2), is nearly identical to
that of its cold-gas companion, VV CrA(S) [127± 1].
Our results suggest that low-mass binaries (gas within
∼200 to 300 AU) may be isotopically more homo-
geneous than single protostars dispersed across the
same cloud/cloud complex, and between protostars
in different clouds. Figure 3 compares the gas-phase
[12CO]/[13CO] and the CO ice fraction. Our new data
add to the group of targets where only cold gas is
present, resulting in cold-temperature isotope ratios
that are likely more robust than the cold-temperature
ratios derived where a warm temperature regime is
also present. The suggested trend in the cold-only
regimes suggests that ice-gas interaction may be con-
tributing to the [12CO]/[13CO] heterogeneity. Figure 4
compares oxygen data for the latest CRIRES sample.
A mass-independent signature is seen in disks VV
CrA [2] and HL Tau, and disk/envelope, WL 6 [12].
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Figure 2: Compilation of [12C]/[13C] vs. RGC (kpc), and
data from this study, some of which are from [2,11,12]. The
CRIRES [12CO]/[13CO] from this study are shown at left
(labels and filled dots). The local ISM (∼ 68 [8]) and Solar
∼ 87 [6] are shown. Color-coded molecular clouds associ-
ated with each protostar is shown at top, left. Infrared data
for HL Tau (lower value [1]) and 3 embedded protostars [21]
are marked (purple; right-side labels). The black arrows in-
dicate [12CO]/[13CO] in diffuse Ophiuchus gas [22,23].
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Figure 3: Comparison of CO ice fraction vs. the
[12C]O/[13CO]Gas for the CRIRES sample. Protostars and
parent clouds are labeled. Blue stars indicate cold-gas iso-
tope ratios from regimes where warm gas (red diamonds)
was also observed. Blue ovals indicate objects where only
cold gas was observed. Total CO ice values were derived
from pure CO ice optical depths [24,25]. Some data are from
[11,12]. Downward arrows are 3−σ upper limits on CO ice.

Results for EC 90,1 (Serpens) and IRS 44 (Ophiuchus)
cannot be differentiated from mass-dependence.

Conclusions: Our CO survey now totals 15
local protostellar site-lines, representing 7 star-
forming clouds and 3 binary systems. Significant
[12CO]/[13CO] heterogeneity is observed in embed-
ded protostars in different clouds, as well as for those
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Figure 4: Comparison of the ISM and CRIRES targets (la-
beled) where 3 oxygen isotopes were observed. Represented
molecular clouds are noted and color-coded at bottom right.
Ellipses are 1− σ. A portion of these data are from [2,12].

dispersed within the same cloud, results which could
be tracers of varying chemical paths for protostellar
cores separated in the parent cloud. The set of robust
cold-gas data adds support for ice-gas interaction
influencing gas-phase [12CO]/[13CO]. Heterogeneity
in oxygen isotopes for the Ophiuchus targets may also
correlate with protostellar evolutionary stage. Our
results suggest potential carbon isotopic homogeneity
within a few hundred AU for low-mass protostars.
Ongoing analyses include massive protostars and
additional isotopic reservoirs, which will hope-
fully continue to inform our understanding of early
protostellar phenomena.
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