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Introduction: We present a robust, autonomous min-
eral classification method using Raman spectra. Our 
study shows that mineral classifiers built with artificial 
neural networks can be trained, using spectral data 
acquired by in situ Raman spectroscopy, to accurately 
distinguish among key minerals for characterizing the 
composition of igneous rocks. These minerals include 
olivine, quartz, plagioclase, potassium feldspar, mica, 
and several pyroxenes. On average, our classifier per-
formed with 83 percent accuracy on unseen data; 
quartz and olivine, as well as the pyroxenes, were clas-
sified with 100 percent accuracy. In addition to identi-
fying diagnostic bands and shapes, our classifier was 
able to incorporate fluorescence patterns into its classi-
fication scheme thereby improving the accuracy of 
results.  

Background: Raman spectroscopy provides rapid, 
non-invasive mineralogical analyses. Samples can be 
scanned with a laser and analyzed in situ without being 
moved and without the need for preparation, such as 
grinding or pulverizing. For example, Haskin et al. 
(1997) used a manual “point cloud” method for quanti-
fying the relative abundance of minerals in rock sam-
ples using in situ Raman spectroscopy with reported 
acquisition times between 30 and 45 seconds per spec-
trum. This approach is appealing because it provides a 
method for compositional analysis of samples as they 
are found, without alteration. Furthermore, the minera-
logical analysis can be performed an unlimited number 
of times, and can be automated. 

Traditional methods of automatic or semi-
automatic Raman analysis use properties of observed 
spectral bands, such as shape and peak location, by 
fitting functions (e.g. polynomials or splines) to the 
bands in order to extract relevant features, which are 
then used to compare spectra. 

Experimental Setup: The minerals we used in this 
study help to discriminate between felsic and mafic 
igneous rocks. Mafic igneous rocks are enriched in 
iron, magnesium, calcium and sodium, but are lower in 
silica. They are enriched in the minerals biotite, oli-
vine, pyroxene, amphibole and plagioclase feldspar. 
However, felsic igneous rocks are enriched in silica, 
aluminum, and potassium and therefore contain higher 
percentages of the minerals quartz, muscovite, and 
potassium feldspars.  

We used a Concurrent Analytical Inc. Raman spec-
trometer with an excitation wavelength of 852 nm to 
measure spectra of minerals in our collection. Our in-

strument has a resolution of 1.8 cm-1, a spectral range 
of 456.1-1638.8 cm-1, and a spot size of ~50 microns.  

The spectra were acquired manually under con-
trolled conditions. Each sample was shielded from 
ambient light by placing it in a dark enclosure. During 
the acquisition process the probe was initially placed 
within 1-2 cm from the sample surface. The focus of 
the excitation laser was manually adjusted until the 
signal strength was at its strongest, which coincides 
with the focal length of the laser beam.  

Spectra were selected from six key mineral groups 
that can be used to identify igneous rocks. These 
groups are quartz, potassium feldspar, plagioclase feld-
spar, mica, pyroxene, and olivine. We processed the 
spectra as follows. First, we used linear interpolation to 
ensure uniform wavelength intervals. Second, we de-
rivatized the spectra by replacing the spectra with their 
first derivative to suppress lower frequency spectral 
artifacts such as fluorescence, which can obscure im-
portant spectral bands.  Third, we applied a smoothing 
filter using the Savitzky-Golay algorithm to attenuate 
the noise that was introduced during the derivatization 
process. Fourth, we normalized the spectral response 
values to account for variations in spectral intensity by 
re-scaling the values to the range [0,1]. Lastly, we util-
ized the multivariate technique of principal compo-
nents analysis (PCA) to reduce the dimensionality of 
the data prior to training a machine learning classifier. 
Between 80 and 90 percent of the variance in the spec-
tral data was captured using the first three principal 
components (see Figure 1). 

A neural network, implemented by the multilayer 
perceptron (MLP) algorithm in the WEKA machine 
learning library, was used to learn the spectral data 
from training set. A 10-fold cross-validation procedure 
was used during training, which made efficient use of a 
limited number of samples. Furthermore, it enabled us 
to optimize various parameters (e.g. smoothing values 
and the number of PCs) before testing on unseen data. 
However, since the training and validation samples are 
drawn from the same dataset, there is some over-fitting 
(the reported accuracy will likely be higher than when 
using a separate testing set). 
Application to other Spectral data sets: To further 
test the robustness of our algorithm, we used spectra 
from the RRUFF mineral database [5], a website that 
archives Raman spectra of mineral samples collected 
from  various sources. We are also currently testing 
our algorithm on other spectral data sets as we expect 
our approach to perform well under any type of spec-
tral data (e.g. Raman, reflectance, XRD, LIBS, etc.) 
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provided that each category of minerals or elements 
has reasonably distinct spectral signatures. Note, how-
ever, that we were able to demonstrate that an artificial 
neural network is able to learn the subtle differences, 
beyond simple Raman band positions and general 
shape, that are not as easily perceived by humans.  
 

 

 
Figure 1. Distribution of mineral spectra in princi-
pal component feature space. Note the clustering of 
different colored points, which correspond to dif-
ferent mineral groups, e.g.  pyroxene (balck), oli-
vine (green), plagioclase (red). 
 

Results: We evaluated our trained classifier using a 
separate test set of data “unseen” by the classifier. We 
were able to classify pure minerals by their mineral 
groups with an average accuracy of 83 percent.  

The tables below provide, called confusion matri-
ces, summarize the classification accuracies by provid-
ing information on how often an item was misclassi-
fied as something else. The rows indicate the total dis-
tribution of mineral classifications in a class of miner-
als given by the row header. The sum of the cells in 
each row indicates the total number of items belonging 
to a given class. The sum of the shaded diagonal cells 
indicates the total number of correct classifications. 

 
 QTZ KSP PLA PYX MCA OLI % 

QTZ 3 0 0 0 0 0 100 
KSP 0 16 4 0 0 0 80 
PLA 0 2 10 0 0 0 83 
PYX 0 1 0 12 1 0 85 

MCA 0 0 0 0 1 0 100 
OLI 0 1 0 1 0 8 80 

Table 1. Summary of classification performance of 
our neural network that was trained with Raman 
spectral data from our mineral collection. On aver-
age, the classifications were correct 83 percent of 
the time. 
 

 QTZ KSP PLA PYX MCA OLI % 
QTZ 5 0 0 0 0 0 100 
KSP 0 9 1 0 0 0 90 
PLA 0 17 4 0 1 0 18 
PYX 0 0 0 45 0 0 100 

MCA 0 0 0 2 9 0 81 
OLI 0 0 0 0 0 14 100 

Table 2. Summary of classification performance of 
our neural network that was trained with Raman 
spectral data from the RRUFF mineral library. On 
average, the classifications were correct 80.4 per-
cent of the time. 
 
Lastly, we provide preliminary results using the same 
method of mineral classification applied to reflectance 
spectra from the RELAB Spectral Library. A 10-fold 
cross-validation procedure was used during training; 
however, due to the sparcity of some minerals we were 
unable to generate a separate test set. 

  
 QTZ KSP PLA PYX MCA OLI % 

QTZ 10 0 0 0 0 0 100 
KSP 0 7 3 0 0 0 70 
PLA 0 4 5 0 0 0 50 
PYX 0 0 1 8 0 1 80 

MCA 0 0 1 0 9 0 90 
OLI 0 0 1 0 0 9 90 

Table 3. Summary of classifications during a 10-
fold cross-validation procedure. 

Conclusions. Our results from both the RRUFF Raman 
spectra as well as the RELAB reflectance spectra suggest 
difficulties distinguishing between plagioclase feldspars and 
potassium feldspars (K-spars). For example, 77 percent of 
plagioclase spectra in the RRUFF test set were incorrectly 
classified as K-spar. These trends are likely due to the 
chemical similarities between both minerals. Interestingly, 
however, these trends are absent in results from using our 
own Raman spectra due to predictable patterns of fluores-
cence in our spectrometer. Therefore, our classifier is capable 
of leveraging a particular response from the instrument to 
improve classification, which provides further demonstration 
of its robustness. 

Acknowledgments: The study also used reflec-
tance spectra from the RELAB spectral website at 
Brown University. 

References: [1] Haskin, L. A., Wang, A., Rockow, 
K. M., Jolliff, B. L., Korotev, R. L., Viskupic, K. M., 
1997. Journal of Geophysical Research 102(E8), pp. 
19,293–19,306. [2] Ishikawa, S. T., Hart, S. D., 
Gulick, V. C. American Geophysical Union, Fall 
Meeting 2010, abstract #IN51A-1137. [3] Hall, M., 
Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., 
Ian, H. SIGKDD Explorations 11(1), pp. 10-18, 2009. 
[5] Downs, R. T. 19th General Meeting of the Interna-
tional Mineralogical Association in Kobe, Japan. O03-
13, 2006. 

3085.pdf44th Lunar and Planetary Science Conference (2013)


