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Introduction:  Microscopic imagers are powerful, 

indeed essential, tools for geology and geobiology. 
Based on the microtexture revealed by a hand lens, a 
trained field geologist can assign a rock to one of three 
basic petrogenetic categories (igneous, sedimentary, or 
metamorphic). Subsequent analyses of thin sections 
under a petrographic microscope add compositional 
information in relation to the microtextural context, 
enabling assessments of primary formation processes, 
environmental conditions, how environments and pro-
cesses changed over time (diagenesis), and information 
about a variety of fossil biosignatures [1,2]. For plane-
tary missions, such information is also considered cru-
cial for prioritizing limited samples for further investi-
gations. 

While the current generation of microscopic im-
agers on MER, Phoenix, and MSL have and will con-
tinue to significantly advance our understanding of 
Mars [3,4] no imager providing information compara-
ble to that from a petrographic microscope has yet 
been flown. Conventional petrographic microscopes 
observe in transmittance, requiring preparation of a 
thin-section by cutting, mounting on a transparent sub-
strate, and polishing the sample to 10’s of μm in thick-
ness before delivery to the instrument - an impractical 
approach for in-situ missions. Analytical instruments, 
such as  X-ray Power Diffraction (XRPD), and various 
geochemical analyses, provide sophisticated and in-
depth analyses of composition. XRPD, however, re-
quires powdered samples, which leads to the loss of 
important microspatial context information.  

Multispectral Microscopic Imager (MMI): As an 
arm-mounted contact instrument, the MMI observes 
unprepared rocks (as well as brushed or abraded 
rocks) and in-situ soils in reflectance rather than 
transmittance [5,6,7]. Light-emitting diodes (LEDs), a 
lens, and a focal-plane-array (FPA) sensitive to visible 
and infrared wavelengths are used to provide spatially 
co-registered sets of multispectral microimages, con-
sisting of visible-to-infrared reflectance spectra of eve-
ry pixel in the field of view (FOV). Analyses of these 
data apply to microscale imaging the same spectro-
scopic approaches already found highly productive for 
macroscale imaging (remote sensing from orbit). De-
velopment models of the MMI (Fig. 1) use sets of 
LEDs including up to 21 different wavelengths from 
0.45 μm (blue) to 1.7 µm (shortwave infrared) to illu-
minate the sample, sequentially acquiring images in 
each of the spectral bands. The custom-designed lens 

provides spatial resolution (63 µm), field-of-view 
(40 x 32 mm), and depth-of-field (5 mm) comparable 
to that provided by a geologist’s hand lens. Alternative 
trades between field-of-view (FOV), spatial resolution, 
and depth-of-field can be obtained by using a lens with 
a different focal length, and FPAs and LEDs are avail-
able to extend the spectral range to longer wave-
lengths. 

 
Fig. 1: Multispectral Microscopic Imager. Illuminator has 102 
LED emitter dies; set of 4 emitting at 635 nm activated in this 
photograph; scale is marked in inches and cm.   

Capabilities: Data from the MMI are presented in 
Fig. 2. Reflectance spectra of this sample exhibit ab-
sorptions at 0.52 and 0.97 µm associated with ferric 
iron and 1.05 µm associated with ferrous iron as well 
as features centered at 1.43 and 1.52 µm associated 
with stretching/bending overtones of OH/H2O.  Spec-
tra of components in the matrix are consistent with 
hydrated minerals (mapped in green, magenta, light 
blue), nontronite (orange); and Fe-oxide/oxyhydroxide 
+ nontronite (red). Spectra of the clasts (blue) are con-
sistent with basalt, while the rind of the central clast 
(purple) is consistent with augite + hydrated mineral. 

Interpretation. Volcanic breccia composed of ba-
saltic clasts cemented by Fe-oxides and hydrated min-
erals (most likely as clay minerals, iron ox-
ides/oxyhydroxides, and hydrated silica). Subrounded 
clast shapes indicate moderate transport from the 
source. The uniformity of clast texture and composi-
tion (monolithologic) is consistent with derivation 
from a single volcanic source. The composition of the 
cements and alteration rinds on basaltic clasts are con-
sistent with alteration at low temperatures. Rinds on 
basaltic clasts may contain hydrated silica, a common 
aqueous alteration product of basalt.  

Potential for preservation of biosignatures. Miner-
al assemblage comprising cements and alteration rinds 
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