PRODUCTION RATES OF 14C AND 10Be IN VACA MUERTA (MESOSIDERITE), CARANCAS AND SOME RECENT FALLS. A. J. T. Jull1, M. D. Giscard1, L. R. McHargue1, K. J. Kim2 and R. C. Reedy3. 1. NSF-Arizona AMS Laboratory, University of Arizona, Tucson, AZ 85721, USA. 2. KIGAM, Daejeon, 305-350, Korea. 3. Planetary Science Institute, Tucson, AZ 85719, USA. E-mail: jull@email.arizona.edu

Introduction: It is important to better understand the production rates of 14C and other cosmogenic radionuclides, so that we better estimate 14C terrestrial ages and 10Be exposure ages.

Meteorites Studied: We analyzed the composition and the amount of 14C and 10Be of 7 samples taken at different depth within the piece number 10 of the mesosiderite Vaca Muerta recovered by Wasson et al. [1]. This is a reinvestigation of some earlier work reported in 1993 [2]. Furthermore, we have also measured the amount of 14C in 6 falls: Carancas, Knyahinya, Nuevo Mercurio, Saratov, Tamdakht (all ordinary chondrites) and the diogenite Tatahouine. Tamdakht and Carancas are recent falls, with less than half a kg of material recovered for Carancas [3], although this seems discrepant from the reports of the crater at this location, implying an impactor of 1.5 to 15 tons [4].

Saturated Activities: 14C measurements on falls range from 43.3 ± 1.3 dpm/kg and 56.9 ± 1.5 dpm/kg, and show good agreements with the measurements done on Bruderheim and other recent falls. The results are within ±15% error in saturated activity calculated previously by Jull et al. [5,6], which arises from the uncertainty in sample position within the meteoroid.

Vaca Muerta: Elemental concentrations of oxides in Vaca Muerta have been analyzed by ICP-OES at the X-Ray Assay Laboratory of Don Mills, Ontario. 14C and 10Be measurements were performed at the NSF-Arizona AMS Laboratory, University of Arizona [5]. The amount of 14C in the Vaca Muerta samples range between 43.9 ± 1.3 dpm/kg and 20.7 ± 1.7 dpm/kg in the bulk samples. One sample from the surface of the meteorite, which silicate and iron phase have been separated by crushing and separation by a hand-magnet, gave a value of 7.6 ± 0.7 dpm/kg for the iron phase and 32.8 ± 1.5 dpm/kg for the silicates. We estimate that Vaca Muerta’s terrestrial age is <2000 years. 14C coupled with 10Be results will allow us to study the production rate as a function of depth and refine our estimate of the age.

Carancas: Carancas has a higher 14C value of 56.9 ± 1.5 dpm/kg, which is higher than expected for an H chondrite. We measured a value for 10Be of 17.3 ± 0.2 dpm/kg, resulting in 14C/10Be = 3.3 ± 0.1. These data are not inconsistent with an object with a radius of ~50-75cm, and in agreement with the mass estimate of [4].

Acknowledgments: We thank H. Chennaoui-Aoudjehane, D. Hill, J. T. Wasson for provision some of the samples.