GALACTIC CHEMICAL EVOLUTION, PRESOLAR GRAINS, AND THE SOLAR 18O/17O RATIO. L. R. Nittler.
Dept. of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC, 20015; lnittler@ciw.edu.

Introduction: On the basis of radio measurements, it has been known for close to 30 years that the 18O/17O ratio is some 25% lower in the interstellar medium (ISM) than in the Solar System [1, 2]. Recent infrared observations of protostars confirm this low ratio in the local ISM [3]. Models of Galactic Chemical Evolution (GCE) have predicted that 18O/17O should remain constant as the Galaxy evolves [4], and this was supported by the original radio data, which showed no sign of a galactic radial gradient for this ratio [1]. A popular explanation for the discrepancy has long been local enrichment of the Sun’s progenitor cloud by one or more supernovae (SNe) [3, 4]. However, a number of theoretical and observational considerations indicate that local enrichment by SNe is not needed to explain solar 18O/17O.

Galactic Chemical Evolution: A strictly constant 18O/17O ratio during GCE is expected only if both isotopes are produced primarily in Type II SNe so that stellar evolutionary timescales are unimportant. The widely-used SN yields of [5] showed significant production of both isotopes, and GCE models based on these yields do indeed predict a flat 18O/17O ratio in time and space [4]. However, more recent calculations [6], taking into account updated nuclear reaction rates, show that SNe cannot be the main source of 17O. Rather, this isotope is probably made primarily in classical novae and AGB stars. Because these sources have much longer evolutionary timescales than SNe, this implies that 17O production should come later than that of 18O and the 18O/17O ratio should decrease with time, providing an alternative explanation for the discrepancy between the Sun and the present-day ISM. One study [7] took into account both novae and AGB stars in modeling the evolution of 18O and 17O, but did not discuss 19O. Thus, a quantitative model of O-isotope GCE taking into account current understanding of nucleosynthesis is still lacking. However, an apparent 18O/17O gradient observed in the most recent radio survey [2] supports that this ratio changes with time. An alternative suggestion for the Sun’s 18O/17O ratio is a presolar merger of the Milky Way with a dwarf galaxy [8].

Presolar Grains: A majority of presolar O-rich grains in meteorites are believed to have formed in low-mass AGB stars and their O isotopes reflect both GCE and internal nuclear processes in the parent stars [9]. The existence of many grains from long-lived (low-mass) stars with 18O/17O ratios higher than the local ISM value as well as the results of simple Monte Carlo simulations [10] argue that the Solar 18O/17O ratio was not atypical in the Galaxy for several Gyr prior to Solar formation.