Introduction: Most of the organic carbon in Carbonaceous Chondrites (CC) is in the form of Insoluble Organic Matter (IOM). Isotopically, the IOM in CC appears to be highly un-equilibrated: discrete H and N isotopic anomalies - the so-called *hotspots* - with δ values up to +19400‰ and +1770‰, respectively, are embedded in the bulk IOM, which has average compositions that are lower by a maximum one order of magnitude [1]. This isotopic heterogeneity is often interpreted as a result of interstellar-like processes occurring in the Solar Nebula or inherited from its parent molecular cloud [1]. Previous studies have observed that the D and 15N *hotspots* can be either spatially correlated (*i.e.* at the same location in the IOM) or uncorrelated [1,2]. Here we present new Hydrogen and Nitrogen isotopic measurements with the NanoSIMS in order to shed light on these spatial correlations.

Methods: IOM from Murchison and Orgueil, extracted by acid attack from the bulk meteorite [3], was pressed in pure gold foil. Two terrestrial kerogen standards (Type I and III) were analyzed in parallel. A 16 keV Cs⁺ primary ion beam of 10pA rastered across a 20x20μm² surface with an ion spot of 200 nm and a counting time of 1 ms/pixel. Three magnetic fields were used to measure successively: (i) H - and D -, (ii) 12C14N- and 12C15N- and (iii) 13C- and 13CH-. To improve the counting statistic, especially for Hydrogen isotopes, a typical measurement of IOM is composed of 100 such cycles. Under these conditions, the total acquisition time for the 100 cycles is about 7 hours. Each of these 100 cycles is systematically bracketed by 2 standard measurements to monitor the possible instrumental shifts.

Results: In Orgueil and Murchison IOM, about 57% and 80% of the *hotspots* in D and 15N are spatially correlated, respectively. Hydrogen and Nitrogen isotopic composition of Orgueil *hotspots* range from +2300‰ to +4000‰ and from +135‰ to +412‰, respectively. For Murchison, H and N *hotspots* range from +2400‰ to +4500‰ and from -157‰ to +480‰, respectively. No correlation is observed between the magnitude of the hotspot anomalies, i.e. δD and δ15N, in Orgueil and in Murchison. Based on H/C and N/C elemental ratios, the *hotspots* are, at a first approximation, indistinguishable from the bulk IOM chemical composition within the 25% relative error.

Recent studies performed on IOM isolated from Orgueil show hydrogen isotopic variations at a molecular scale. [3,4]. For instance, the Orgueil D-rich *hotspots* are a mixing between D-rich radicals (δD = +95,000‰) and the bulk IOM (δD = +1360‰). As for the D-rich radicals, it can be hypothesized that the spatially correlated D-rich and 15N-rich *hotspots* are caused by 15N-rich radical carriers. Such an assumption could be validated by EPR spectroscopy.

As a corollary of this hypothesis, the occurrence of spatially uncorrelated *hotspots* suggests that some D-rich radicals do not have any Nitrogen in their chemical formula, therefore yielding a δ15N equal to that the bulk IOM.