THE RELATIONSHIP BETWEEN HE IRONS AND H CHONDRITES: PETROLOGIC AND OXYGEN ISOTOPE CONSTRAINTS.

K. H. McDermott¹, R. C. Greenwood¹, I. A. Franchi¹, M. Anand¹ and E. R. D. Scott². *Email: k.h.mcdermott@open.ac.uk.* ¹CEPSAR, The Open University, Milton Keynes MK7 6AA, UK. ²HIGP, Univ. Hawaii, Honolulu, HI 96822, USA.

Introduction: Silicate inclusions have been observed in about half of all currently identified IIE irons (21 specimens) [1]. Based mainly on their similar oxygen isotope compositions, a genetic relationship between the IIE irons and H chondrites had been proposed [2,3]. However, this relationship was subsequently questioned due to the limited overlap between laser fluorination data for equilibrated H chondrites and the earlier IIE silicate data [4,5]. We are undertaking a detailed oxygen isotope and geochemical study of both the IIE silicate inclusions and H chondrites, with the aim of investigating further the relationship between the two groups.

Analytical techniques: Oxygen isotope analysis of both mineral separates and bulk silicate inclusions from 9 IIE irons, as well as a suite of 12 H chondrite samples, was undertaken by infrared laser-assisted fluorination [6]. Textural and quantitative analysis of IIE silicate inclusions was carried out using a Cameca SX-100 Electron Microprobe and a FEI Quanta 200 FIB-ASEM.

Petrographical results: Detailed petrographic study of the chondritic IIE-an Netschaevo, (Fa_{14} , excluding Fa_{25} secondary olivines) reveals that it not only contains well-developed chondrule relicts, but also extensive evidence of partial melting. The more primitive IIE silicates have olivine compositions that fall within the H chondrite range, i.e. Techado (Fa_{16}) and Watson 001 (Fa_{20}), both of which have also experienced melting.

Oxygen isotopic compositions: Oxygen isotopes in the IIEs show a range of $\Delta^{17}\mathrm{O}$ values from 0.58% to 0.90%, with a mean of 0.72 \pm 0.11% (2 σ). $\delta^{18}\mathrm{O}$ for the 9 samples studied also show a considerable range from 3.06% to 6.25%, the mean $\delta^{18}\mathrm{O}$ value is 4.69 \pm 0.59% (2 σ). The wide range in $\delta^{18}\mathrm{O}$ values reflects the fact that some of the IIE silicate inclusions are highly differentiated (Kodaikanal and Colomera), as discussed by [5]. For comparison, the oxygen isotope analyses of the 12 equilibrated H chondrites examined gave a mean $\delta^{18}\mathrm{O}$ value of 4.11 \pm 0.56% (2 σ) and $\Delta^{17}\mathrm{O}$ value of 0.71 \pm 0.12% (2 σ).

Discussion: The presence of relict chondrules in Netschaevo suggests that the group as a whole may be derived from a chondritic parent body. The nearly identical mean $\Delta^{17}O$ values for the IIE irons and H chondrites support the possibility of a genetic link between these two groups. In addition, the substantial variation in $\Delta^{17}O$ seen in both groups suggests that they were derived from parent bodies with similar levels of primary isotopic heterogeneity. The wide variation in $\delta^{18}O$ values seen in some IIE silicate indicates that they underwent significant degrees of differentiation. In conclusion, our new laser fluorination data show that the H chondrites and IIEs could both have originated on the same unequilibrated H chondrite parent body.

References: [1] Mittlefehldt D.W. et al. 1998. Reviews in Mineralogy 36. [2] Goldstein J. I. et al. 2009. Chemie der Erde 69:293-325. [3] Clayton R. N. and Mayeda T. K. 1996. Geochim. Cosmochim. Acta 60:1999-2018. [4] Folco L. et al. 2004. Geochim. Cosmochim. Acta 68:2379-2397. [5] Franchi I. A. 2008. Rev. Min. Geochem. 68:345-397. [6] Miller M. F. et al. 1999. Rapid Commun. Mass Spectrom. 13:1211-1217.