Temperature and wind data from the Phoenix MET station and their use in estimating turbulent heat fluxes.
Richard Davy1, Peter A. Taylor1, Haraldur P. Gunnlaugsson2, Jeffrey A. Davis3, Carlos F. Lange4 and Wensong Weng5, 1Centre for research in Earth and Space Science, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3 2Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK–8000 Århus C, Denmark, 3Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Eng. Bldg., Edmonton, Alberta T6G 2G8, Canada.

Introduction: There has been near-continuous measurement of temperature [1] on the Phoenix lander mast and wind measurement by the teetl (2). The wind data is intermittent as it requires the use of the SSI camera [3] to image the teetl instrument. The diurnal cycle of temperature has been consistent throughout the first 60 sols of the Phoenix mission with strong, order of 10 K, fluctuations during the highly convective period (0800-1600).

Using wind data we estimate the friction velocity \(u_* \) and we infer \(T_* \) from the temperature data, which gives us an estimate of the surface heat flux.

Spectral analysis: Samples of the temperature data during periods of convective (unstable) and stable/neutral (stable) stratification were used to analyse the power spectrum and obtain estimates of the turbulence parameters \(u_* \) and \(T_* \) and the heat flux. To avoid lander influences on temperature data we used data from the lower level (L1, Figure 1) thermocouple at a height of 1 m above the lander deck, approximately 2 m above the surface. The mean wind speed and temperature over our sampling periods were computed.

Figure 1 illustrates the diurnal temperature cycle for a typical sol and the sampling period used to obtain unstable power spectra. The power spectrum for the unstable temperature data matches well with the theoretical cascade at high frequency (Figure 2).

Figure 2: The unstable temperature spectra for sol 44 normalised by \(\sigma_r^2 \) as a function of normalized frequency.

Heat flux: By making use of Monin-Obukhov similarity theory we can use relations between the standard deviation in temperature and the turbulent parameter \(T_* \) to determine \(u_* \), \(T_* \) and the heat flux. For the unstable temperature data we use the relation [4]:

\[
\frac{\sigma_r}{T_*} = 0.95 \left(\frac{z}{L} \right)^{-1/3}
\]

and for the stable temperature data we use [5]:

\[
\frac{\sigma_r}{T_*} = 0.05 \left(\frac{z}{L} \right)^{+3}
\]

where \(L \) is the Obukhov length. By making use of these relations, and by using the relevant log relation for the wind profile to get the friction velocity, we can get an estimate of the heat flux from:

\[
\frac{H}{\rho c_p} = -u_* T_*
\]

The wind speed has been consistent with mean values of 3-6 ms\(^{-1}\) and corresponding \(u_* \) of 0.2-0.4 ms\(^{-1}\). Typical mid-day (1200-1430) mean values of the heat flux are 7 W m\(^{-2}\) with variation from 4 – 10 W m\(^{-2}\) over the 11 sols investigated. The nocturnal (1800-1830) values have a mean of -0.3 W m\(^{-2}\) for the three sols investigated.

Lander effects: Although the MET mast that supports the temperature and wind sensors is built at
the edge of the lander deck and the sensors are located between 0.25 and 1 m above the deck, there are conditions under which the presence of the lander and its instruments interfere with the temperature and wind measurements. In order to estimate this interference, an approximation of the Phoenix lander (Figure 3) was discretized, using approximately 10^6 nodes, and calculated with prescribed winds and deck temperatures in the ANSYS/CFX flow solver.

The potential effect of the lander has a very strong directional nature, related intrinsically to the position of the other instruments onboard. For example, the 3 temperature sensors experience slightly different wind speeds, which affects their response time, when they are in the wake of one of these flow obstructions. Figure 4 shows estimated changes of a normalized wind speed $u^* = u/U_\infty$ with the direction.

Although the top thermocouple (and on a smaller magnitude the telltale wind sensor slightly above it) would feel little effect apart from the wake of the camera at approx. 50 degrees angle, the lowest thermocouple suffers from strong influence from deck instruments on a large range of directions. More specifically, the model has allowed us to demonstrate how the elevated temperatures of the lander deck surface and of its instruments are carried by the perturbed flow above the lander and systematically affect the temperature measurement of the lowest sensor (notice blue curve in Fig. 1 between 18:00 and 22:00), when the MET mast is downstream from the lander, i.e. for winds coming mainly from N and E. Figure 5 illustrates this case with a plot of temperature contours above the lander.

These results help us determine the cases when the atmospheric measurement data may not be a reliable representation of the undisturbed patterns.

References:

