

Aerocapture Implementation of NASA's "Neptune Orbiter With Probes" Vision Mission

Andrew P. Ingersoll

California Institute of Technology

Thomas R. Spilker

Jet Propulsion Laboratory, California Institute of Technology

Outer Planets Assessment Group (OPAG) Boulder, Colorado June 9-10, 2005

Technical Teams

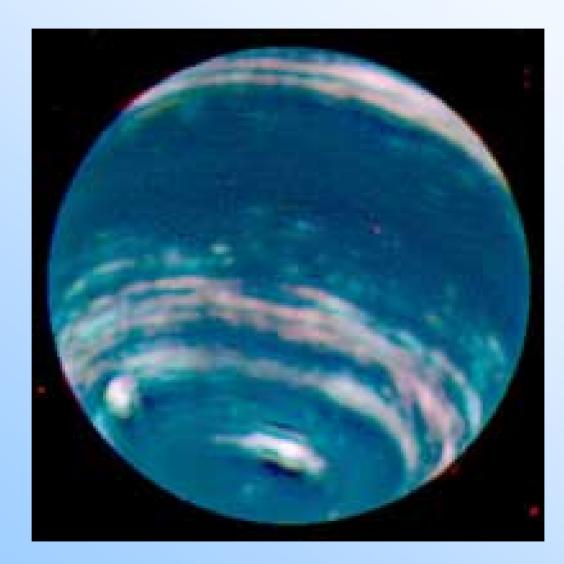
–<u>Science Team</u>

INSTITUTE OF INCHNO 1891

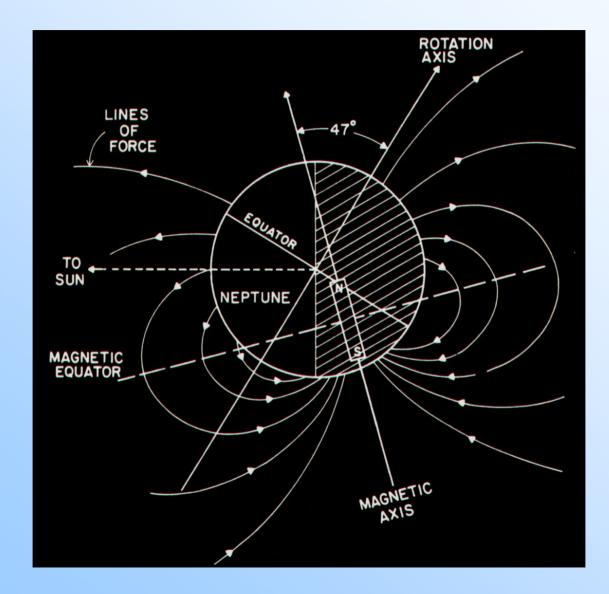
- Prof. Andrew P. Ingersoll, PI
 - California Institute of Technology
- Co-Investigators
 - Dr. Thomas R. Spilker, Study Lead
 Jet Propulsion Laboratory
 - Dr. Heidi B. Hammel
 Space Science Institute
 - Prof. William B. Hubbard
 University of Arizona
 - Prof. Krishan K. Khurana
 University of California, Los Angeles
 - Dr. Laurence A. Soderblom
 US Geological Survey
 - Dr. William D. Smythe
 Jet Propulsion Laboratory
 - Dr. Linda J. Spilker
 Jet Propulsion Laboratory
 - Dr. Richard E. Young
 –NASA Ames Research Center

-Implementation Team

- Dr. Thomas R. Spilker
 - Study Lead, Mission Architect; JPL
- Mr. Robert W. Bailey
 - Systems Engineer
 - Jet Propulsion Laboratory
- Dr. Robert J. Haw
 - Transfer trajectory design
 - Jet Propulsion Laboratory
- Dr. Mary K. Lockwood
 - Aerocapture systems
 - NASA Langley Research center
- Dr. Bernard Laub
 - Aerocapture thermal protection
 - NASA Ames Research Center
- Dr. Robert N. Miyake
 - Spacecraft thermal systems
 - Jet Propulsion Laboratory
- Mr. Nathan J. Strange
 - Tour trajectory design
 - Jet Propulsion Laboratory
- Dr. Ethiraj Venkatapathy
 - Entry probe thermal protection
 - NASA Ames Research Center

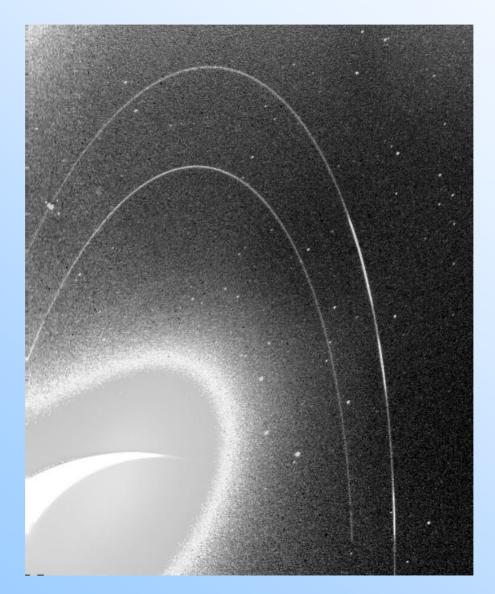

Science Objectives: Why Study the Neptune System?

- Study the interior structure, composition, and atmospheric dynamics of an "ice giant," with probes to 100 bars and orbiter remote sensing over 3-year orbital tour
- Investigate the surface, interior, and atmosphere of Triton, which may be a captured Kuiper Belt Object, with > 40 flybys (altitude < 1000 km) and possibly a Triton lander
- Observe the response of the magnetosphere to daily "pole on" orientation to the solar wind, with 3-year orbital tour
- Study Neptune's unique ring arcs and associated moons over 3 year mission, with 3-year orbital tour



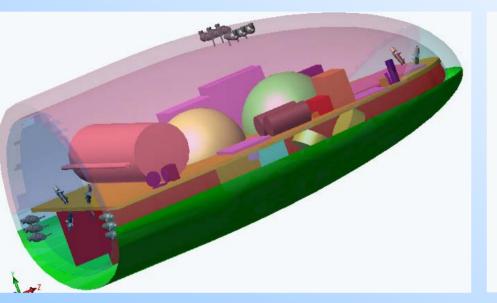
Voyager 2 View of Triton

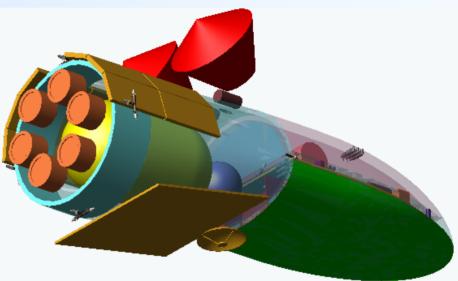
Asymmetric Magnetic Field



NNO11142

Rings and Ring Arcs

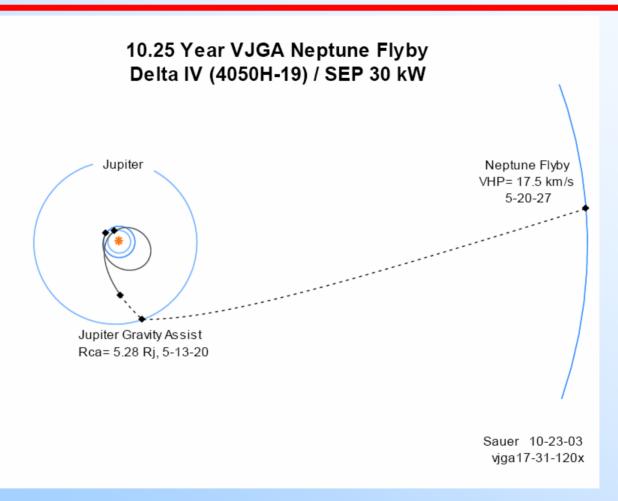




- Single launch with Delta IV-Heavy-class LV
- SEP or chemical propulsion, + gravity assists, to Jupiter; JGA to Neptune; total transfer time ~12 years or less
- Aerocapture insertion into Neptune orbit
 - Entry speeds from 23 to 32 km/s available
- At least 2 Neptune entry probes to at least 100 bar levels, deployed and supported (i.e., data relay) pre-aerocapture
- 3-year prime mission in Neptune orbit, powered by RTGs; extended mission possible
- At least 40 close (<1000 km) Triton flybys during prime mission for Triton science and orbit evolution; Triton lander is possible.
- Ka-band radio for primary downlink
 - 10 terabits data volume with Next Gen DSN

Flight System

Aerocapture System Analysis Team orbiter and "Ellipsled" design Ellipsled and SEP stage, with cruise HGA, entry probes, and probe data relay antenna



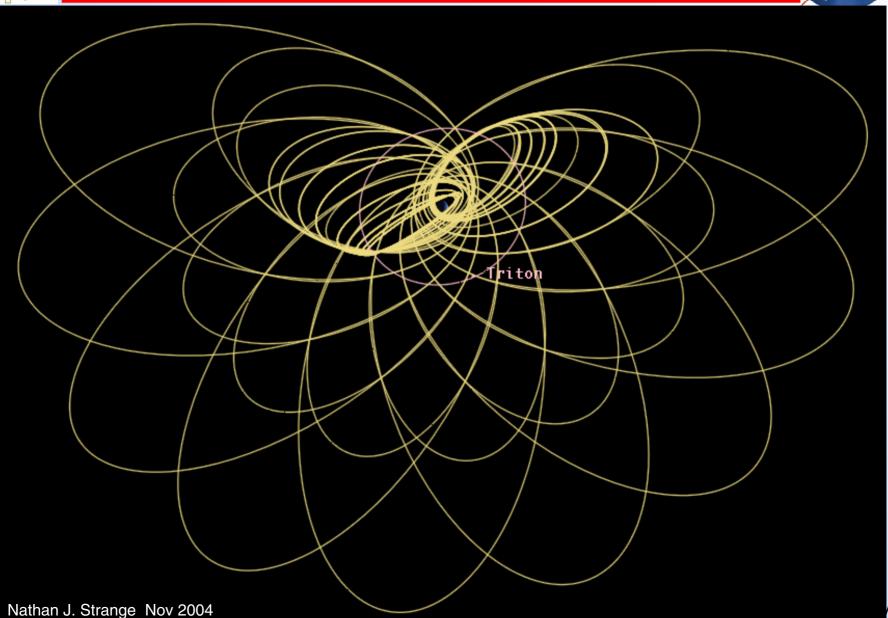
Mission Design: Transfer to Neptune

- *Example* SEP launch option
 - Launch Feb 2017 on a Delta 4050H-19, $C_3 = 12.5$
 - S/C launch mass, 6250 kg, yields 800 kg launch margin
 - Arr Aug 2029; 1900 kg (dry) delivered to Neptune orbit
- Example Chem launch option
 - Launch Dec 2015 on a Delta 4050H-19, $C_3 = 28$
 - S/C launch mass, 4780 kg, yields 420 kg launch margin
 - Arr Aug 2029; 1900 kg (dry) delivered to Neptune orbit
- SEP system 30-40 kW, 5-6 NEXT thrusters
 - Dry mass slightly over 1300 kg
- Small (260 kg) carrier stage for chem option
 - 10 terabits data volume with Next Gen DSN

Example Transfer to Neptune

- 10.25-year transfer uses SEP and a Venus gravity assist
- Entry speed 26.7 km/s prograde, 31.7 km/s retrograde
 - 11

STUDIE OF


Mission Design: Neptune System Tour

- Tour begins after aerocapture exit cleanup maneuver
- Science investigations require observing Neptune, its rings, and its magnetosphere from a wide range of radial distances, solar phase angles, longitudes, latitudes, and inclinations
- Close flybys (<1000 km altitude) of Triton to study atmosphere, surface, interior (magnetic field and moment of inertia); flybys provide gravity assists to alter the spacecraft's orbit around Neptune
- *Fully integrated* example tour design demonstrates ability to fulfill science requirements within 2 years
- 3-year prime mission yields flexibility in the tour design
- Cassini mission is demonstrating the operations processes needed (e.g., quick post-flyby nav solutions and maneuver design)

Mission Design: Neptune System Tour (Sun is to the right)

NUSTITUTE OF TECHNOL

Enabling Technologies

- Aerocapture systems and software: thermal protection system (TPS) materials; autonomous guidance, navigation, and control; aeroshell simulation and ground test facilities; sensors and actuators
- Aerocapture flight demonstration next opportunity is New Millennium Program's ST-9
- Entry probe TPS, pressure vessels, and thermal insulation
- Advanced radioisotope thermoelectric generators (RTG)

Greatly Enhancing Technologies

- Large, multi-engine solar electric propulsion (SEP) systems
- Advanced DSN ground stations for high data volumes

SSE Decadal Survey 2003: Primary Recommendations on Infrastructure (1)

 We recommend that NASA commit to significant new investment in advanced technology in order that future highpriority flight missions can succeed..


- •Power: Advanced RTGs
- •Power: In-space Nuclear power source
- •Propulsion: Nuclear--powered electric propulsion
- •Propulsion: Advanced electric engines
- •Propulsion: Aerocapture
- •Communications: Ka band
- •Communications: Optical
- •Architecture: Autonomy
- •Avionics: Advanced packaging and miniaturization
- •Instrumentation: Miniaturization
- •Entry to landing: Autonomous entry, precision landing
- •In-situ ops: Sample gathering, handling and analysis
- •In-situ ops: Instrumentation
- •Mobility: Autonomy
- •Contamination: Forward-contamination avoidance
- •Earth return: Ascent vehicles

Backup Slides

Agree on a message - the SSE Decadal Survey

If you repeat it, they will come

Support Discovery, New Frontiers, consensus-building toward Flagships - the Great Observatories model

Beware of entitlements, creeping science requirements, special deals on spacecraft, lobbying, earmarking

If Congress thinks we are pork, we will be eaten

SSE Decadal Survey: Mission Priority by Panel

Panel	Mission Concept Name	Cost Class	
Inner Planets			
	Venus In-Situ Explorer	Medium	
	South Pole-Aitken Basin Sample Return	Medium	
	Terrestrial Planet Geophysical Network	Medium	
	Venus Sample Return	Large	
	Mercury Sample Return	Large	A Missians listed in
	Discovery Missions	Small	 Missions listed in
Primitive Bodies			Driority Ordor
	Kuiper Belt-Pluto Explorer	Medium	Priority Order
	Comet Surface Sample Return	Medium	, i i i i i i i i i i i i i i i i i i i
	Trojan/Centaur Reconaissance Flyby	Medium	 Missions in bold
	Asteroid Rover/Sample Return	Medium	
	Comet Cryogenic Sample Return	Large	face were selected
	Discovery Missions	Small	
Giant Planets	Coopini Eutondod Mission	Cmall	by the Steering
	Cassini Extended Mission	Small	J U
	Jupiter Polar Orbiter with Probes	Medium	Group for overall
	Neptune Orbiter with Probes Saturn Ring Observer	Large	
	Uranus Orbiter with Probes	Large Large	prioritization
	Discovery Missions	Small	
Large Satellites		Sman	
	Europa Geophysical Explorer	Large	
	Europa Lander	Large	
	Titan Explorer	Large	
	Neptune Orbiter/Triton Explorer	Large	
	lo Observer	Medium	
	Ganymede Orbiter	Medium	
	Discovery Missions	Small	
Mars			
	Mars Sample Return	Large	
	Mars Smart Lander	Medium	
	Mars Long-Lived Lander Network	Medium	
	Mars Upper Atmosphere Orbiter	Small	
10	Mars Scouts	Small	
18			A.P. Ingersoll, T.R. Spilker 2005/

SRM 3 - The SSE Strategic Roadmap

Roadmap Requirements
- Technology

Note: Protection systems includes thermal protection systems during hypervelocity entry Technology and Advanced Development Area

Deep Space Power Generation Radioisotope Power (thermoelectric) Radioisotope Power (Stiriling, SRG) Solar Power Generation

Deep Space Transportation Solar Electric Propulsion -Aerocapture

Advanced Chemical

Deep Space Telecommunications Direct to Earth Proximity (Relay) Communications

Extreme Environments

Protection Systems

Component hardening Operational Resilience

Planetary Protection

Forward Protection

Backward Protection

Systems Analysis

Science Instruments Remote Sensing

in situ Sensing

SSE Decadal Survey 2003: Mission Priorities

• Small Class (<\$325M)

ORNI4 1

- 1. Discovery missions at one launch every 18 months
- 2. Cassini Extended mission (CASx)
- Medium Class (<\$650M) New Frontiers
 - 1. Kuiper Belt/Pluto (KBP)
 - 2. South Pole Aitken Basin Sample Return (SPA-SR)
 - 3. Jupiter Polar Orbiter with Probes (JPOP)
 - 4. Venus In-situ Explorer (VISE)
 - 5. Comet Surface Sample Return (CSSR)
- Large Class (>\$650M)
 - 1. Europa Geophysical Explorer (EGE)

Enter an equal partnership with NSF to build and operate a

Large-aperture Synoptic Survey Telescope (LSST)