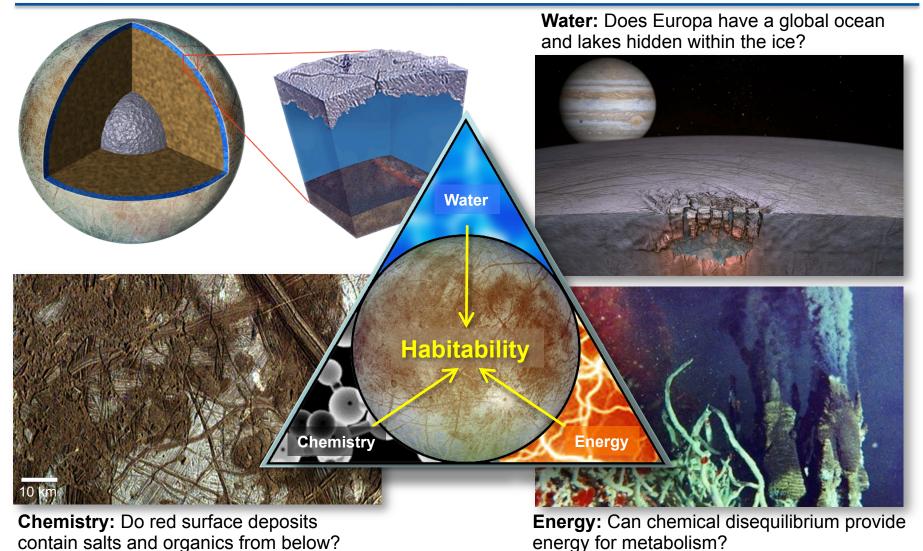


Europa Mission Studies

OPAG March 29, 2012

Europa Mission Studies: Introduction Louise Prockter (APL) Deputy Europa Study Scientist

OPAG March 29, 2012


3/29/12

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*

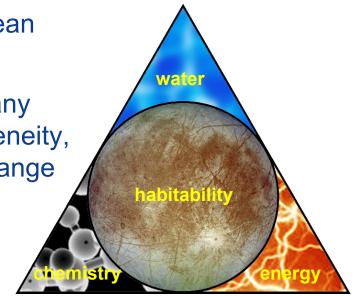
Europa: Ingredients for Life?

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Europa Science Definition Team

- Fran Bagenal
- Amy Barr
- Bruce Bills
- Diana Blaney
- Don Blankenship
- Will Brinckerhoff*
- Jack Connerney
- Kevin Hand*
- Tori Hoehler*
- Bill Kurth
- Melissa McGrath
- Mike Mellon*
- Jeff Moore
- Bob Pappalardo
- Louise Prockter
- Dave Senske
- Everett Shock*
- David Smith

Univ. Colorado Brown Univ. JPI JPL Univ. Texas GSFC **GSFC** JPI Ames Univ. Iowa **MSFC SWRI** Ames JPL API JPI ASU MIT


Space Physics Geophysics Geophysics Composition Ice shell Astrobiology Magnetometry Astrobiology Astrobiology Plasma Atmosphere Ice Physics / Geology Geology Chair / Study Scientist Deputy / Geology Deputy / Geology Geochemistry Geophysics

*SDT augmentations for lander study

- *Goal:* Explore Europa to investigate its habitability
- Objectives:

- Themes:
- Ocean: Characterize the extent of the ocean and its relation to the deeper interior
- Ice Shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange
- Composition: Understand the habitability of Europa's ocean through composition and chemistry

 Geology: Understand the formation of surface features, including sites of recent or current activity....

Science as a Driver of Mission Architecture

Science traceability led to mission concepts:

Orbiter Element:

Geophysical measurements that can be achieved only from <u>orbit</u>

- Science focused primarily to address "Ocean" objective:
 - Gravity field
 - Tidal amplitude
 - Induction signatures
 - Plasma correction
 - Stratigraphic mapping

- Flyby Element: Remote measurements that can be accomplished via <u>multiple</u> flybys
- Science focused primarily to address "Chemistry" and "Energy" themes:
 - Subsurface dielectric horizons
 - Surface constituents
 - Atmospheric constituents
 - Targeted landforms
- Each element achieves key Europa science objectives
- The elements are complementary, and each has very high science value of its own



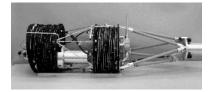
7

Objective	Europa Science	Orbiter	Multiple Flyby
Ocean	Gravity field	1	
	Tidal amplitude	1	
	Induction signatures	1	
	Plasma correction	1	
Ice Shell	Subsurface dielectric horizons		1
Composition	Surface constituents		1
	Atm. constituents		1
Geology	Global mapping	1	
	Targeted landforms		1

Orbiter Mission Traceability Ocean Emphasis

Goal		Obiostivo		Investigation	Model Instruments	Theme		
Goal	J		Investigation		Wouel Instruments	W	С	E
Explore Europa to investigate its habitability		extent of the ocean and its relation to the deeper interior.	of g	termine the amplitude and phase gravitational tides.	Radio subsystem, Laser altimeter	✓		
			indu	termine Europa's magnetic uction response.	Magnetometer, Langmuir probe	1	1	
			of t	termine the amplitude and phase copographic tides.	Laser altimeter, Radio subsystem	✓		
				termine Europa's rotation state.	Laser altimeter, Mapping camera	√		
			O.5 Invo	estigate the deeper interior.	Radio subsystem, Laser altimeter, Magnetometer, Langmuir probe	~	1	1
	Geology	formation of surface features, including	forr cha	termine the distribution, mation, and three-dimensional tracteristics of magmatic, tonic, and impact landforms.	Mapping camera, Laser altimeter	1		1
				Themes: W= Water, C	C = Chemistry, E = E	nergy		

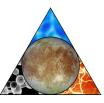
Orbiter Model Payload Instruments



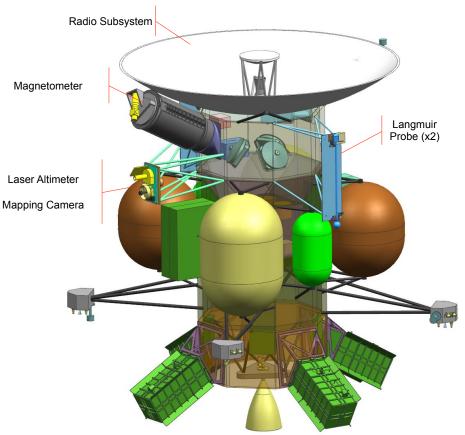
- Radio Subsystem (RS)
 - X-band up and down; Ka-band down only
 - Ka Transponder
- Laser Altimeter (LA)
 - Nadir view, co-boresighted with camera on 2-axis gimbal platform
- Magnetometer (MAG)
 - Dual 3-axis fluxgate
 - Sensors on boom 5 m and 10 m from S/C
- Langmuir Probe (LP)
 - Two 5 cm diameter spheres mounted on
 1 m long booms pointed > 90° from each other
- Mapping Camera (MC)
 - Pushbroom imager; 1024 pixel CMOS or CCD line array
 - 5 separate line arrays in focal plane (radiation shielded)
 - 4 nadir viewing: panchromatic + 3 color bands (color for E/PO)
 - 1 panchromatic viewing ~40° forward or aft for stereo
 - Nadir view, co-boresighted with LA on 2-axis gimbal platform

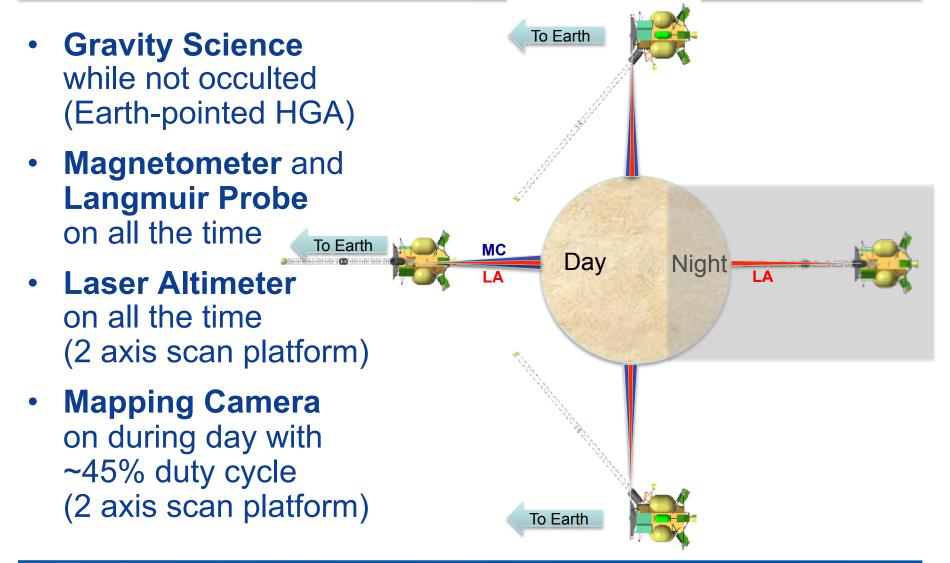
NEAR NLR

Galileo MAG

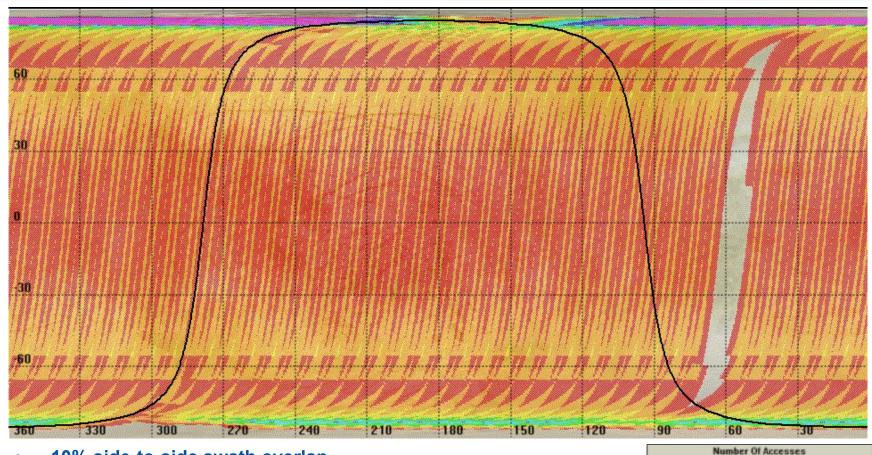


Rosetta LAP



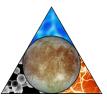

Orbiter Mission Configuration

- 3-axis stabilized, functionally redundant spacecraft
- 5 reference science instruments
- 4 ASRGs, 59 Ahr Battery
- X/Ka-band, 3 m fixed HGA, 129 kbit/sec average downlink
- Dual mode, Bi-prop 890 N main engine, 16 RCS thrusters. Capable of 2.3 km/s Delta-V



Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

- 10% side-to-side swath overlap
- Orbit altitude of 103 km permits ground track near-repeat


• Wide gap is due to Jupiter occultation; It could be filled through off-nadir pointing

4

Flyby Mission Traceability

Chemistry & Energy Emphasis

13

			Turus sting tion Model Turstu	Theme		
Goal		Objective	Investigation Model Instr.	W	С	E
		shell and any subsurface	I.1Characterize the distribution of any shallow sub- surface water and the structure of the icy shell.Radar sounder, Topo. Imager	\		1
	Shell	heterogeneity, and the	I.2Search for an ice-ocean interface.Radar sounder, Topo. Imager	✓		1
	Ice Sł	nature of surface-ice- ocean exchange.	I.3Correlate surface features and subsurface struc- ture to investigate processes governing material exchange among the surface, ice shell, and ocean.Radar sounder, IR spectrometer, 	✓	~	1
			I.4 Characterize regional and global heat flow variations.Radar sounder	<		1
nvestig	ition	Understand the habitability of Europa's ocean through	C.1 Characterize the composition and chemistry of the Europa ocean as expressed on the surface and in the atmosphere. IR spectrometer, INMS	<	<	
t to in	Composition	chemistry.	C.2 Determine the role of Jupiter's radiation environ- ment in processing materials on Europa. IR spectrometer, INMS		<	1
uropa	Co		C.3 Characterize the chemical and compositional pathway's in Europa's ocean. INMS	\	 Image: A start of the start of	
xplore Eu	eolog.	tion of surface features, including sites of recent or current activity, and	G.2 Determine sites of most recent geological activity, and characterize high science interest localities.	~		1
Ш	Ð	characterize high science interest localities.	Themes: W= Water, C = Chemistry, E = Energy			

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

Flyby Model Payload Instruments

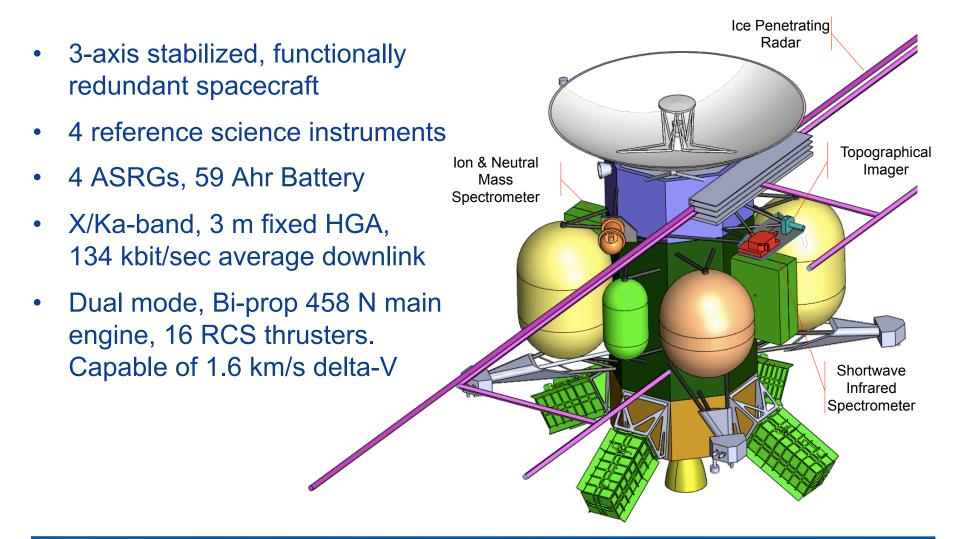
- Ice Penetrating Radar (IPR)
 - Dual-frequency sounder
 - 60 MHz with 10 MHz bandwidth (shallow)
 - 9 MHz with 1 MHz bandwidth (deep)
 - Deployed dipole antenna array on 15 m boom
- ShortWave InfraRed Spectrometer (SWIRS)
 - Spectral Range 0.85 5.0 µm; Spectral Resolution 10 nm
 - Single optic, single grating spectrometer & HgCdTe detector
 - Scan mirror for Target Motion Compensation
- Topographical Imager (TI) lacksquare
 - Pushbroom, 4096 pixels width
 - Stereo obtained through along-track overlap
- Ion and Neutral Mass Spectrometer (INMS)

New Horizons Ralph/MVIC

Similar instruments

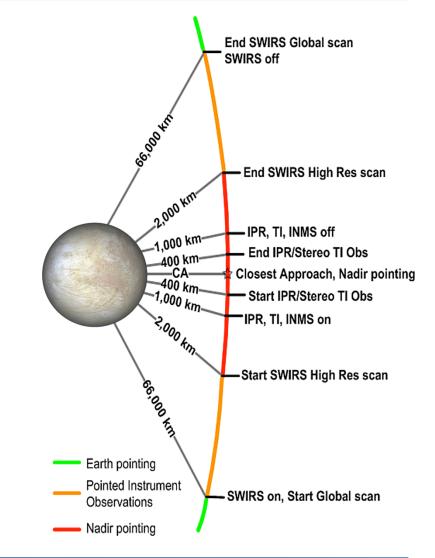
MRO SHARAD

LRO M³

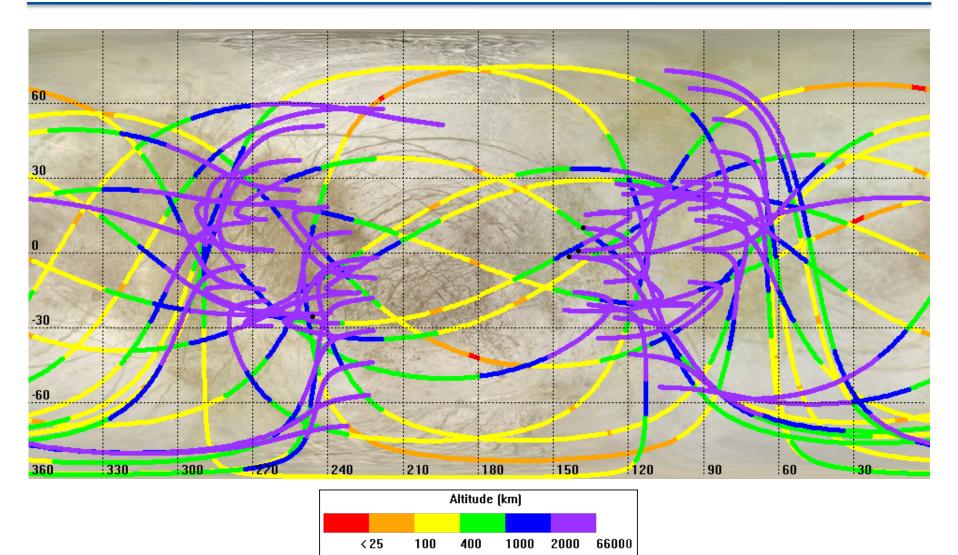

Cassini INMS

Mass Range 1 – 300 Da; Mass Resolution > 500; Sensitivity 10 particles/cm³

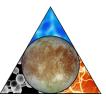
Flyby Mission Configuration Overview

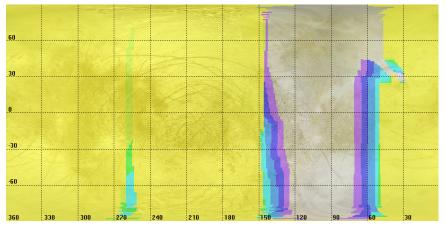


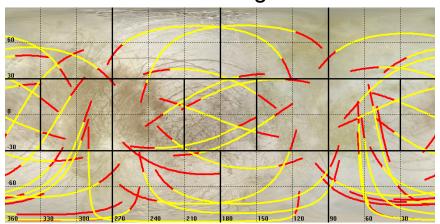
Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*

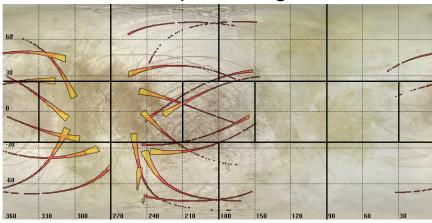

- Ice Penetrating Radar obtains primary data at ≤ 400 km
- ShortWave InfraRed Spectrometer obtains data ≤ 66,000 km
- Topographical Imager obtains stereo images ≤ 1,000 km
- INMS obtains data
 ≤ 1,000 km, including several ~25 km flybys

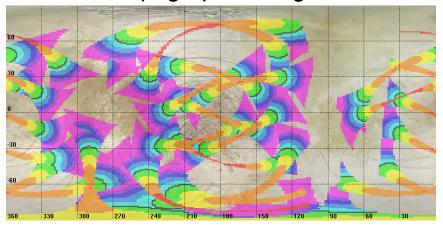
Flyby Ground Tracks




Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only** 17


Instrument Coverage


S/W IR Spec. - Low Res


Ice Penetrating Radar

S/W IR Spec. – High Res

Topographic Imager

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. **Pre-Decisional — For Planning and Discussion Purposes Only**

Flyby Ground Tracks

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*

Key Science Drivers & Requirements

Instrument(s)	Key Accommodation Requirements		
Radio Subsystem + Laser Altimeter	Low altitude (~100+ km), circular, near-polar orbit, for at least 30 days. Unperturbed orbital arcs (no thrusting) of at least 3 days.	Orbiter	
Magnetometer + Langmuir Probe	Low altitude (~100+ km), circular, near-polar orbit, for at least 30 days. Cover approximately 12 hours of Europa local time.	Orbiter	
Mapping Camera	Low altitude (~100+ km), ≥ 80% global coverage under near uniform lighting conditions, solar incidence angle > 45° (70° preferred).	Orbiter	
Ice Penetrating Radar	etrating \geq 800 km tracks in 11 of 14 globally distributed regions, intersected by at least 1 other track, with track lengths measured from \leq 400 km alt. ~25–100 km closest approach at \leq 6 km/s.		
ShortWave IR Spectrometer			
Topographical Imager	High resolution stereo imagery aligned with IPR coverage; lighting conditions solar incidence angle > 45° (70° preferred).	Flyby	
Ion and Neutral Mass Spectrometer			

Floor model instrument

Baseline model instrument

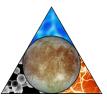
3/29/12

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. *Pre-Decisional — For Planning and Discussion Purposes Only*

Science as a Driver of Mission Architecture

Science traceability leads to a <u>two element</u> mission concept:

Orbiter Element:


Geophysical measurements that can be achieved only from <u>orbit</u>

- Payload focused primarily to address "Ocean" objective:
 - Radio Subsystem (RS)
 - Laser Altimeter (LA)
 - Magnetometer (MAG)
 - Langmuir Probe (LP)
 - Mapping Camera (MC)
- Have readily accommodated those instruments that are:
 - Less massive
 - Lower power
 - Lower data rate

- Flyby Element: Remote measurements that can be accomplished via <u>multiple</u> flybys
- Payload focused primarily to address "Chemistry" and "Energy" themes:
 - Ice Penetrating Radar (IPR)
 - ShortWave IR Spectrometer (SWIRS)
 - Ion and Neutral Mass Spectrometer (INMS)
 - Topographical Imager (TI)
- Have readily accommodated those instruments that are:
 - More massive
 - Higher power
 - Higher data rate

A Pragmatic Path to Europa Exploration

- Either an orbiter or multiple-flyby mission option would fulfill high-priority Europa science objectives
 - Orbiter element concentrates on the "Ocean" science
 - Multiple-flyby element concentrates on the "Chemistry" and "Energy" science
- Each element has very high science value on its own
- Directly responsive to Decadal Survey's recommendation for Europa
- Scientific priorities drive the architecture, permitting low-cost Europa mission options