

	RPS System Performance Compari		
	MMRTG	ASRG*	
BOM Net Electrical Power	123 W _e	140 - 160 W _e	
Total Mass per Unit	44 kg	22 - 20 kg	
Specific Power	2.8 W _e /kg	6.4 - 8 W _e /kg	
Mass for >800 W _e FS Mission	308 kg (861 W _e)	132 kg (840 W _e)	
RPS System Efficiency	~ 6.3 %	> 28%	
W _e per kg Pu ²³⁸	35 W _e /kg	159 - 180 W _e /kg	
Mass of Pu ²³⁸ per Unit	3.52 kg	0.88 kg	
Number of GPHS Modules	8	2	
Development Cost	\$94M	~\$115M	
Unit Cost	\$36M	\$20M	
Hot / Cold-end Temperature	538°C / 210°C	640 - 850°C / 80°C	
BOM Heat Output	1877 W _t	360 W _t	

Discovery & Scout Mission Capability Expansion Program Summary

Program Purpose

- Create opportunity for new science on Discovery and Scout budgets
- Foster exploration of Discovery & Scout class missions enabled by nuclear power in the planetary science community
 - Encourage the formation of mission design teams to begin the discussion of necessary engineering trades
- Inform NASA of the breadth of missions possible with the addition of the ASRG technology to the Discovery and/or Mars Scout programs

Program Plan

- > Solicit mission concept proposals for small planetary missions that require a nuclear power source (such as the ASRG)
- Award funding for 6 to 8 six-month detailed mission concept studies.
- Evaluate these mission concepts to inform decision to expand the mission capabilities of the Discovery and Mars Scout programs to include radioisotope power systems.

▶ Groundrules

- > Studies are expected to be led by a scientist serving as Principal Investigator (PI) with a small science team
- Mission design is a critical part of these studies to make trades, explore feasibility, & refine the mission concept
 - Mission design expertise will be offered from JPL's Team-X and GSFC IDC
- Short proposals (7 pages) are solicited that clearly summarize :
 - The mission concept
 - Science target(s) and objectives.
 - Relevance to NASA objectives and Decadal Survey science objectives,
 - Nature of the science advancement expected from the mission.
 - Justification of the need to use the ASRG
- Missions must fit within Discovery or Scout Mission Class

PRE-DECISIONAL. FOR PLANNING PURPOSES ONLY

Discovery & Scout Mission Capability ExpansionMission Study Selections

No	Target	Title	Principle Inv	Institutions
34	Moon Mobile Lander	ExoMoon: ASRG-Powered Lunar Polar Exploration	Dr Richard Elphic	LANL, Ball Aerospace, Honeybee Robotics, UC, GSFC, ARC, CUA, UHi
6	Moon Rover/Comsat	JEDI: A Lunar Polar Volatile Explorer	Dr Bradley Jolliff	Washington U, SWRI, LANL, LM, Obv. Midi-Pyrenees, U of Guelph
19	Titan Boat	Titan Mare Explorer (TiME)	Dr Ellen Stofan	Proxemy Research, UofAz, CITech, Lockheed Martin, USGS, JHU/APL
3	lo Fly-Bys	lo Volcano Observer (IVO)	Dr Alfred McEwen	U of Arizona, USGS, SWRI, Physikalisches Institut
11	Trojan Lander	ASRG-Enabled Trojan Asteroid Mission (Ilion)	Dr Andrew Rivkin	JHU/APL, GRC, SETI Institute
21	Comet Lander	Comet Hopper (CHopper)	Dr Jessica Sunshine	U of Maryland, Cornell, Smithsonian Inst, UWa-Seatle, UTx-Austin, LM
2	Comet Sample Return	Comet Coma Sample Return Mission	Dr Scott Sandford	ARC, U of Central FL, U of Md, Lockheed Martin
32	Mars Lander Drill	Kuklos: A tour through martian history	Dr Michael Hecht	JPL, UC-Berk, LM, CITech, ARC, Geological Survey of Canada
5	Venus Balloons (2)	Polar VALOR: Venus Balloon	Dr Kevin Baines	JPL, UMi, UWi-Madison

Program solicited mission concept proposals for small planetary missions that require the ASRG power source Two Stirling Engines with ~140 Watts each (as GFE) Intended to foster science exploration in planetary science by missions enabled by ASRG Mission design assistance for these 6 month mission concept studies will be offered by NASA Selected 9 proposals 40 proposals submitted with average budget of \$271K NRA directed proposers to budget \$200,000-\$300,000

