



# Europa-UVS Team



#### **Instrument Engineer:**

Laura Jones (JPL)

#### **Investigation Scientist:**

Scott Edgington (JPL)



## SwRI Europa-UVS: Science Objectives

- Selected as the mission "Plume Hunter"
- Europa-UVS Objectives
  - Determine the composition & chemistry, source & sinks, and structure & variability of Europa's atmosphere, from equator to pole.
  - Search for and characterize active plumes in terms of global distribution, structure, composition, and variability.
  - Explore the surface composition & microphysics and their relation to endogenic & exogenic processes.
  - Investigate how energy and mass flow in the Europa atmosphere, neutral cloud & plasma torus, and footprint on Jupiter.



## **SwRI** Europa-UVS: Science Goals Trace

- Europa Atmosphere: Understand Europa's atmosphere and its exchanges with the surface/sub-surface (to reveal composition and chemistry)
  - Key: Decadal Survey (DS) #3; Supporting: DS #2 & #5
- 2. Europa Plumes: Determine regions of current activity and the nature of subsurface water reservoirs (future exploration sites)
  - Key: DS #4 & AO PEA+; Supporting: DS #3, #2, #5, & #1
- 3. Europa Surface: Relate surface composition, chemistry, and maturity to geological provenance
  - Supporting DS: #3, #4, and PEA+
- 4. Europa Plasma Environment: Investigate connections which transport mass and energy between Europa, its space environment, and Jupiter's magnetosphere
  - Key: DS #5



## Europa-UVS Techniques

### 1) UV Emissions



HST-STIS observation of H aurora diagnostic of water vapor plumes

**Aurora & Airglow** 

### 2) UV Reflections



LRO-LAMP observation of reflected solar Lyα from the Moon's north polar region

**Surface Albedos** 

### 3) UV Transmissions



Simulated Europa-UVS observation of a stellar occultation by Europa

**Stellar & Solar Occultations** 

## SwRI Europa-UVS Estimated Count Rates



- Top: Expected Europa-UVS count rates during a typical Europa flyby, with <u>excellent signal-to-noise even with high background rates</u>
- Bottom: Expected background count rates and total fluence from penetrating electrons, throughout the mission

Kurt Retherford

6



TA008973-EuropaUVS

## Europa-UVS Heritage



JUICE-UVS



## **Current Configuration**

#### **Instrument Components**

- Housing
  - Al Structure
  - Doors
  - TaW Shielding
- Apertures
  - Airglow Port (AP)
  - High-spatial-resolution Port (HP)
  - Solar Port (SP)
- Optics
  - Off-axis Paraboloid (OAP) Mirror
  - Solar pickoff mirror
  - Grating
  - Slit
- MCP XDL Detector Assembly
- Electronics
  - Detector
  - Command & Data Handling (C&DH)
  - Low Voltage Power Supply (LVPS A&B)
  - High Voltage Power Supply (HVPS A&B)



# **SwRI** Europa-UVS Key Components

#### **OAP Mirror:**

- 41 mm × 65 mm
- 120 mm focal length
- Al/MgF<sub>2</sub> coating

#### **Grating:**

- 50 mm × 50 mm
- 1600 gr/mm toroid
- Al/MgF<sub>2</sub> coating





#### **MCP Detector:**

- XDL (Cross delay-line)
- Csl photocathode
- ALD & Borosilicate glass plates, as on JUICE-UVS





## Europa-UVS Specs

| Mass (CBE+cont.):         | 6.43 kg plus 11.1 kg shielding = 17.5 kg                                                                             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| Power (CBE+cont.):        | 9.7 W                                                                                                                |
| Dimensions:               | 34.6 cm x 38.2 cm x 14.5 cm                                                                                          |
| Spectral Range:           | 55-210 nm                                                                                                            |
| Spectral Resolution:      | <0.6 nm (point source), <1.2 nm (extended source); resolving power $\lambda/\Delta\lambda$ =220                      |
| Spatial Resolution:       | 0.16° (AP), 0.04° (HP); Nyquist sampled                                                                              |
| Field of View:            | 0.1° x 7.3° + 0.2° x 0.2° (7.5° full length)                                                                         |
| Effective Area:           | 0.6 cm <sup>2</sup> @ 125 nm                                                                                         |
| Telescope / Spectrograph: | Off-axis Primary / Rowland circle mount                                                                              |
| Detector Type:            | 2D MCP (solar blind), Csl photocathode, cross-<br>delay-line (XDL) readout, 2048 spectral x 512<br>spatial x 256 PHD |
| Radiation Mitigation:     | Contiguous High-Z shielding ( $4\pi$ sr @ detector and electronics)                                                  |



The JUICE-UVS Phase B effort is maturing our baseline Europa-UVS design, with IPDR planned for 2016 Mar./Apr.

# **SwRI** Europa-UVS Operations Approach

UVS's approach to ops and sequencing is very flexible and we strive to not drive the S/C design



Direct observation of UV emissions from Europa aurora, airglow, surface albedo, and other Jovian system atmospheres, and atmospheric absorption measurements via stellar and attenuated solar occultation



## **SwR** Multi-faceted for spatial and spectral imaging

#### Atmosphere & Plume Composition from UV Spectra





Plume Detection and Density (low and high resolution modes illustrated)

#### Plasma Environment from Oxygen Emission





Surface Structure & Composition from scattering of Ly-α

## SwRI Scans Provide Plume Images, Searches

- When at 20 R<sub>E</sub> a 7.5° one-axis scan is all that is needed to provide the global view at top
  - Even smaller angular scans when at greater distance
  - Assuming a ~0.05°/s rate (e.g., as for LRO) the whole observation fits within ~5 min.
- Nadir pointed push-broom style observations within ±1 hr from C/A obtains great image quality
  - Won't target limb at C/A, as shown at middle & bottom, but not a problem
- Stellar occultations from >66,000 km still target Europa within ~2°
  - No crazy slews are needed for UVS
  - Inertial pointing should be easier than base-body tracking





## **Europa-UVS Summary**

- UVS addresses key science goals regarding Europa's composition and surface chemistry
- UVS contributes unique plume searching capabilities to the Europa mission
  - Same UV technique used by Hubble to discover plumes
  - Stellar & Solar occultations, as for Enceladus plumes
- UVS's simple & repetitive approach to modest non-nadir operations minimizes costs
- UVS's family of heritage Rosetta, New Horizons, Lunar Reconnaissance Orbiter, Juno, and JUICE instruments provides low technical risk
- UVS is ready to go for Jupiter's radiation environment



# SwRI Remote Sensing FOVs: Co-Alignment Details under discussion, TBR

EIS NAC: 2.35° X 1.17

Gimbal FOR: ±30° along- and cross-track (plan to stay within MISE FOR when at

close range to Europa)

EIS WAC: 24° x 48°

Not shown

 $UVS: 7.3^{\circ} \times 0.1^{\circ} + 0.2^{\circ} \times 0.2^{\circ}$ 

Full length 7.5°

MISE:  $4.3^{\circ} \times 0.007^{\circ}$ 

Scan FOR: ±30° along-track

Typically scan x4° or x 1°

E-THEMIS: 5.7° x 4.3°

REASON: 60° (deep mode)

Not shown

Pushbroom imaging by EIS, UVS, E-THEMIS, REASON, and (at times) MISE enable arbitrary image lengths along-track, all nadir at C/A

> UVS does not have a scan mechanism, so Field of Regard (FOR) = Field of View (FOV) Kurt Retherford





### What's in a Name?

- Europa-UVS, not E-UVS
  - E-UVS can imply "extreme" ultraviolet, 10-124 nm
  - Europa-UVS observes in 55- 210 nm not just the "extreme" band!
- Europa-UVS = Europa Ultraviolet Spectrograph
  - Not spectrometer
  - Not spectroscope
  - In the standard definition a spectrograph obtains information across frequency space all at once and by contrast a spectrometer scans frequency space
- Not just "UVS" unless the context is clear
  - There is also Juno-UVS and JUICE-UVS
  - Many members of the Europa-UVS team have worked/are still working on other UVS instruments, so it is best to avoid confusion

## SwRI Internal View: Top view, cover off



## SwRI Hubble December 2012 Plume Detection

- Repeated detection is still needed, despite an extensive Hubble campaign last year
- Detectable signals persist for 5 orbits (~7 hours)
  - With multiple detected occurrences in a row a random noise explanation is unsatisfactory
- Roth et al., Science, 2014
   Supplement details three rigorous statistical approaches

- Roth et al., PNAS, 2014 explain why an impact explanation is highly improbable (one in 80 yr)
- Unlike the O<sub>2</sub> aurora, the H<sub>2</sub>O aurora features do not rock with Jupiter's magnetic field orientation
  - Several dozen similar lo and Ganymede STIS G140L datasets show no signs of a ~600 R Lyα feature above the limb
  - Likely not proton aurora
  - Brightens in plasma sheet



