

High-Resolution, 3-D Insight into Europa's Ice Shell and Potential for Current Activity

APPLIED PHYSICS LABORATORY

Science & reconnaissance objectives

MA. Ice Shell and Ice-Ocean Interface

- A.1 Constrain the thickness and nature of the ice shell.
- A.2 Correlate surface features and subsurface structure to investigate surface – ice shell – ocean exchange processes and recent activity.

B. Geologic Structures and Processes

- B.1 Characterize endogenic structures, surface units, and relationships to Europa's subsurface and potential subsurface water, and identify recent geologic activity.
- B.2 Constrain formation processes, 3D structures, and history of Europa's diverse geologic landforms
- R. Characterize Scientifically Compelling Landing Sites and Hazards

Dual-camera imaging system

Narrow-Angle Camera (NAC)

> FOV: 2.3° cross-track x 1.2°along-track

> IFOV: 10 µrad

> Aperture: 152 mm

Focal length: 1000 mm

Targeting capability: 2-axis ±30° gimbal

Wide-Angle Camera (WAC)

> FOV: 48° cross-track x 24° along-track

IFOV: 218 μrad

> Aperture: 8 mm

> Focal length: 46 mm

Color capability: 6 stripe filters

Dual-camera imaging system

- Narrow-Angle Camera (NAC) provides very high-res, stereo reconnaissance
 - > 2-km-wide swaths at 0.5-m pixel scale during flybys at 50-km altitude
- 2-axis gimbal enables independent targeting without s/c pointing:
 - Near-global mapping at ≤50-m pixel scale
 - > Regional and high-resolution stereo imaging
 - > High-phase-angle observations for plume searches
- Wide-Angle Camera (WAC) field of view designed to acquire along-track pushbroom stereo swaths: 32-m/DTM pixel, 4-m vertical precision @ 50 km
- WAC supports characterization of cross-track clutter for radar sounding
- WAC pushbroom color imaging with 6 filters (350-1050 nm) to map surface units and correlations with geologic features and topography
- Identical 4096 cross-track x 2048 along-track CMOS detectors
 - > Rad-hard, eliminating significant charge-transfer efficiency degradation
 - > Fast readout, framing & pushbroom flyby, minimize radiation-induced noise
- Identical rad-hard DPUs, cross-strapped for redundancy

Dual-camera imaging system to achieve Decadal Survey Europa science & recon goals

- Understand formation of landforms and potential for current activity
 - Near-global mapping at ≤50 m/pixel to characterize endogenic landforms and global cross-cutting relationships
 - > High-resolution (0.5-25 m/pixel) imaging and stereo of key features
 - > Topographic swaths to characterize clutter for ice-penetrating radar
 - Color photometry (surface and potential plumes) and high-resolution imaging to identify sites of current or recent activity
- Characterize ice shell and ice-ocean interface
 - > Geodesy to constrain ice-shell thickness & ice-ocean interface
- Perform reconnaissance
 - > Targeted ≤1-m/pixel images and stereo; ≤11 m/pixel stereo/color context

- Understand formation of landforms and potential for current activity
 - Near-global mapping at ≤50 m/pixel to characterize endogenic landforms and global cross-cutting relationships

■ WAC ground-track coverage (tour 13F7)

including pushbroom stereo and color

7 m

NAC maps >95% of Europa at ≤50 m/pixel

100

100

NAC with 2-axis gimbal can image a 2.3° swath within and beyond WAC 48° FOV

289 m

24 m 83 m Incidence angle \leq 85°, Emission Angle \leq 70°, Phase Angle \leq 120°

1 km

EIS mapping coverage: WAC coverage NAC with gimbal

WAC + NAC w/ gimbal NAC without gimbal

WAC + NAC w/o gimbal

10000

1000

Pixel Scale (m)

2 m

- Understand formation of landforms and potential for current activity
 - > High-resolution (0.5-25 m/pixel) imaging and stereo of key features
 - Topographic swaths to characterize clutter for ice-penetrating radar
- Perform reconnaissance
 - Targeted ≤1-m/pixel images and stereo; ≤11 m/pixel stereo/color context

EIS and ice penetrating radar (IPR)

Maximum penetration depth d (km) for which EIS characterizes surface clutter as a function of s/c altitude (km) compared to penetration depths of EC IPR deep and shallow modes (n=1.78).

- Understand formation of landforms and potential for current activity
 - > High-resolution (0.5-25 m/pixel) imaging and stereo of key features
 - > Topographic swaths to characterize clutter for ice-penetrating radar
- Perform reconnaissance
 - > Targeted ≤1-m/pixel images and stereo; ≤11 m/pixel stereo/color context

- WAC ground-track stereo coverage (tour 13F7), color coded by vertical precision
- 90N 30N 30N 30S 60S 90S 180W 135W 90W 45W 0 45E 90E 135E 180E

Areas accessible (tour 13F7) for NAC stereo imaging, color coded by vertical precision

- Understand formation of landforms and potential for current activity
 - Color photometry (surface and potential plumes) and high-resolution imaging to identify sites of current or recent activity
- WAC performs color pushbroom imaging along ground tracks: 11 m/pixel across 45-km swath width at 50-km altitude
- EIS response functions under system response curve, with Europa spectra: ice-rich ≤700 nm (Spencer et al. 1995); ice-poor ≤700 nm (B. Clark et al. 1998); ≥700 nm (Carlson et al. 2009; McCord et al. 2010)

Name	λ (nm)	Key Purposes
Clear*	350-1050 (NAC, WAC)	Surface observations, stereo, context imaging, best SNR for faint targets (e.g. plume searches)
NUV	350-400	Surface color; plumes with Rayleigh scattering
BLU*	400-500	Surface color; Rayleigh scattering (with NUV), Galileo
GRN*	500-600	Surface color; airglow (eclipse, nightside); Galileo
RED*	650-780	Surface color; Galileo
IR1	780-920	Surface color; continuum for H₂O band
1-µm*	950-1050	Surface color, coarse-grained ice H ₂ O band; Galileo
		_

EIS bandpasses; *Comparable filter on *Galileo* SSI (Belton et al. 1992) for change detection

- Understand formation of landforms and potential for current activity
 - Color photometry (surface and potential plumes) and high-resolution imaging to identify sites of current or recent activity
- Areas accessible (NAC & WAC) under different viewing geometries, color coded by repeat coverage opportunities (tour 13F7).
- Pixel scale <1000 m, incidence <85°</p>
- Left: emission <75°, phase <75°</p>

Right: emission >85°, phase >120°

- Characterize ice shell and ice-ocean interface
 - Geodesy to constrain ice-shell thickness & ice-ocean interface

Contours illustrate modeled topography for thickness variations (mean 42-km-thick, basal heat flux 5 mW/m2 [Nimmo et al. 2007]): 200-m intervals; black = zero; solid = positive; dashed = negative.

Longitude

Streamlined flyby observation planning

■ EIS observations for example encounter: tour 13F7 orbit 31E24 approaches at low phase angles (4-20°), passes closest to Europa at moderate phase angles (20-130°), then departs at very high phase angles (130-170°).

Streamlined flyby observation planning

- Key EIS observations (blue = NAC; green = WAC; white = both cameras)
- Total compressed raw data volume = 487 Gb for EC, average ~11 Gb/flyby
 - > Flyby coverage & data volume depend on geometry/coverage opportunities
- Decompression (~3 bpp to 16 bpp) expands data to ~2.6 Tb
- Derived data products expand by ~10x, for total PDS archives of ~26 Tb

Range (km)	Approx. Time from C/A	NAC/WAC	Observation	Coverage	EIS Objective	Pix Scale/DEM Precisions	Colors/Stereo	Data Vol (Gb)	
Distant	Varies, >6 hrs	NAC	Plume/surface monitor	Limb (high phase)	A, B	≤10 km	Clear	2	
≤80,000	≤5:30	N/W	Plume searches	Limb (high phase)	A, B	≤0.8 km	Clear	30	
≤80,000	≤5:30	N/W	Geodesy/rotation	Limb & terminator	Α	0.05-1 km	Clear	45	
≤5,000	≤0:30	NAC	NAC global mapping	>95%	A, B, R	≤50 m	Clear	70	
100-2,600	0:02-0:15	WAC	WAC pushbroom color	>70%	A, B	≤1 km	3-6 colors	60	
100-2,600	0:02-0:15	WAC	WAC pushbroom stereo	>70%	B, R	32-630 m/DTM pixel; 4-80 m vert. precis.	Stereo (clear)	60	
≤2,000	≤0:13	NAC	NAC regional stereo (framing)	~45%	A, B	≤50 m/DTM pixel; ≤15 m vert. precis.	Stereo (clear)	75	
≤100	≤0:02	WAC	High-res color and stereo	>600,000 km²	R	≤21 m/pixel, ≤64 m/DTM pixel; ≤8-m vert, precis.	3-6 colors; Stereo	20	
≤100	≤0:02	NAC	Very high res	>3000 km ²	R	≤1 m	Clear	60	
≤100	≤0:02	NAC	Very high res stereo	>3000 km ²	R	2-m/DTM pixel; 0.2-m vert. precis.	Stereo (clear)	60	
Varies	Varies	N/W	Calibrations	N/A	all	N/A	N/A	5	
Tota									

Space A

Coordinated Europa Science

- Geologic structures and processes, exchange, recent activity
 - Controlled global maps, including DTMs and color <u>MISE</u> (near-IR overlap) <u>E-THEMIS</u>
 <u>Europa-UVS</u> <u>REASON</u> <u>Gravity</u> surface expression (or not) of subsurface structures
 - High-res & high-res stereo landing site characterization <u>REASON MISE E-THEMIS</u>
 - ➤ Plume search, color photometry, high-res texture, change detection, surface irradiation → sites of current or recent activity <u>REASON MISE E-THEMIS Europa-UVS ICEMAG MASPEX SUDA PIMS</u>
- Interior
 - EIS limb profiles for long-wavelength topography complement <u>REASON</u> altimetry and <u>Gravity Science</u>
 - > EIS control network, colocated with <u>REASON</u> altimetry, to measure obliquity and forced librations complements <u>Gravity Science</u> (cf. Park et al., 2015)
- REASON EIS supports surface clutter characterization
 - > Coincident WAC pushbroom stereo, nightside imaging via Jupitershine
 - > NAC global mapping
- E-THEMIS EIS albedo map, Jupitershine imaging

Europa remote-sensing fields of view

- Europa-UVS:
 - 7.3° x 0.1°
 - $+ 0.2^{\circ} \times 0.2^{\circ}$
- EIS WAC:
 - 48° x 24°
- EIS NAC:
 - 2.35° x 1.17°
- MISE:
 - 4.3°x 0.86 to 4.3°
- E-THEMIS:
 - 5.7° x 4.3°
- REASON: 60°
- EIS NAC targeting: 2-axis ±30°

Data products

Standard Products (bold = threshold) [APL = EIS data processing pipeline]
All products follow IAU coordinate-system and USGS mapping conventions

Raw data [APL]

SPICE kernels (NAIF node) [APL]

Radiometrically calibrated images [APL]

Derived data products [APL, Science Co-Is (Sec. E.5)]:

- Geometrically projected images and co-registered color image cubes. Including jitter corrections as needed with updated C-matrix [McEwen]
- Uncontrolled regional mosaics, monochrome and color [APL, McEwen]
- Controlled regional mosaics, monochrome and color [APL, McEwen]
- Controlled global mosaics, monochrome and color [APL, McEwen]
- Topographic products [Kirk, Hayes]. WAC and NAC regional and high-resolution DTMs
- Supplementary data products [APL, Humm, Turtle, Soderblom]; calibration data and algorithms; documentation for data and data reduction

Special Products (derived data products)

- Shape models [Nimmo]
- Geologic maps [Patterson, Collins, Soderblom, Hayes]
- Plume search database [Hurford, Quick, Hansen]
- Photometric data products [Thomas]
- GIS products [Hayes, Collins]

