
NASA Planetary Science Programs

Outline

- Mission events
- Passed FY15 Budget elements
- President's FY16 Budget
- Discovery and New Frontiers Status
- Mars Program Status
- Outer Planets Mission Status

Planetary Science Missions Events

2014

July – Mars 2020 Rover instrument selection announcement

* Completed

August 6 – 2nd Year Anniversary of *Curiosity* Landing on Mars

September 21 – MAVEN inserted in Mars orbit

October 19 – Comet Siding Spring encountered Mars

September – Curiosity arrives at Mt. Sharp

November 12 – ESA's *Rosetta* mission lands on Comet Churyumov–Gerasimenko

December 2/3 – Launch of *Hayabusa-2* to asteroid 1999 JU₃

2015

March 6 – *Dawn* inserted into orbit around dwarf planet Ceres

Early April – MESSENGER spacecraft impacts Mercury

April – Europa instrument Step 1 selection

May – Discovery 2014 Step 1 selection

July 14 – *New Horizons* flies through the Pluto system

2016

March – Launch of Mars missions InSight and ESA's ExoMars Trace Gas Orbiter

March – Europa instrument Step 2 selection

July – Juno inserted in Jupiter orbit

July – ESA's Bepi Colombo launch to Mercury

August – Discovery 2014 Step 2 selection

September – *InSight* Mars landing

September – Launch of Asteroid mission *OSIRIS – REx* to asteroid Bennu

September – *Cassini* begins to orbit between Saturn's rings & planet

Planetary Budget

Passed FY15 Appropriations Bill

- Planetary Total Budget: \$1,438M
- \$255.8M for Planetary Science Research, including \$165.4M for Research and Analysis and \$40M for Near Earth Object Obs;
- \$255M for Discovery, including not less than \$25M for Future Discovery Missions;
- \$286M for New Frontiers, including not less than \$5M for Future New Frontiers Missions and \$224.8M for OSIRIS-REx;
- \$305M for Mars Exploration, including not less than \$100M for a Mars 2020 Rover that meets scientific objectives laid out in the most recent Planetary Science decadal survey;
- \$181M for Outer Planets, including not less than \$100M for a Jupiter Europa mission as described in the House report; and
- \$155M for Technology, including \$18M for technologies for the study and characterization of the surface and subsurface of Europa

President's FY16 Budget Request (\$M)

[Notional]
-----------	---

	FY15	FY16	FY17	FY18	FY19	FY20
Planetary Science	\$1,437.8	\$1,361.2	\$1,420.1	\$1,458.0	\$1,502.4	\$1,527.8
Science Research		276.3	282.0	292.0	291.7	285.7
Discovery		156.1	201.6	277.2	337.4	344.9
New Frontiers		259.0	124.0	81.5	85.7	137.8
Mars Exploration		411.9	539.3	561.3	531.5	464.2
Outer Planets		116.2	117.7	81.6	87.6	110.5
Technology		141.7	155.5	164.4	168.5	184.7

Planetary Budget Features: What's Changed

- Initiates formulation for a mission to Jupiter's moon Europa, to explore the most likely host of current life beyond Earth
- Releases the next New Frontiers AO in 2016
- Maintains Stirling technology development to support future radioisotope power systems
- Establishes the Planetary Missions Program Office at MSFC to manage Discovery, New Frontiers, JUICE and Europa flight projects
- Lunar Reconnaissance Orbiter and Opportunity rover not funded in 2016 budget given higher priorities
 - Will reassess condition and cost of maintaining LRO and Opportunity this summer
- Increase in funding for Near Earth Object Observation Program to accelerate hazardous asteroid detection and characterization

Planetary Budget Features: What's the Same

- Continues development of InSight and OSIRIS-REx missions for launches in 2016
- Continues development work on STROFIO, MOMA, and JUICE instruments in collaboration with ESA missions to Mercury, Mars and Jupiter, respectively, as well as on-going operations of Rosetta and Mars Express with ESA and planned operations of Akatsuki and Hayabusa-2 with JAXA.
- Supports Planetary missions with mission operations and navigation tools, data archiving, and sample curation
- Continues supporting research and technology selections and awards, and maintains DOE capabilities to produce radioisotope power generators and the Plutonium-238 to fuel them

Discovery and New Frontiers Status

Discovery and New Frontiers

- Address high-priority science objectives in solar system exploration
- Opportunities for the science community to propose full investigations
- Fixed-price cost cap full and open competition missions
- Principal Investigator-led project

- Established in 1992
- \$450M cap per mission excluding launch vehicle (FY15)
- Open science competition for all solar system objects, except for the Earth and Sun

- Established in 2003
 - \$1,000M cap per mission excluding launch vehicle (FY15)
- Addresses high-priority investigations identified by the National Academy of Sciences

Completed

Completed

Discovery Program

Mars evolution: Mars Pathfinder (1996-1997)

Lunar formation: Lunar Prospector (1998-1999)

NEO characteristics: NEAR (1996-1999)

Solar wind sampling: Genesis (2001-2004)

Comet diversity: CONTOUR (2002)

Nature of dust/coma: Stardust (1999-2011)

Comet internal structure: Deep Impact (2005-2012)

Lunar Internal Structure GRAIL (2011-2012)

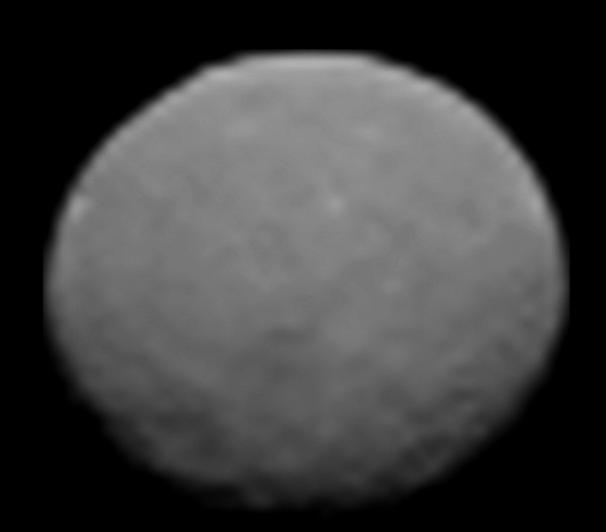
Mercury environment: MESSENGER (2004-2015)

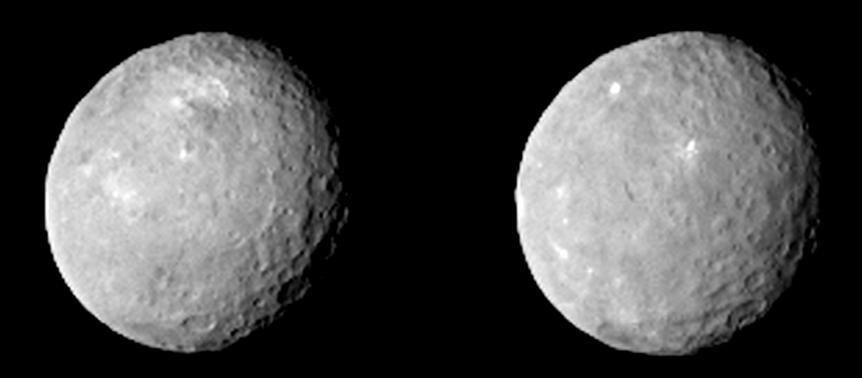
Main-belt asteroids: Dawn (2007-2016)

Lunar surface: LRO (2009-TBD)

ESA/Mercury Surface: Strofio (2016-TBD)

Mars Interior: InSight (2016-TBD)




Status of Discovery Program

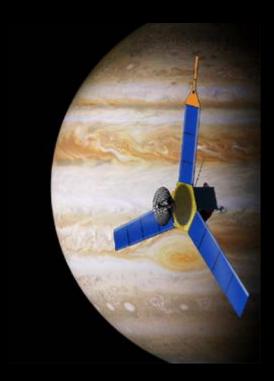
<u>Discovery proposals were due yesterday - February 18th</u>

Missions in Development

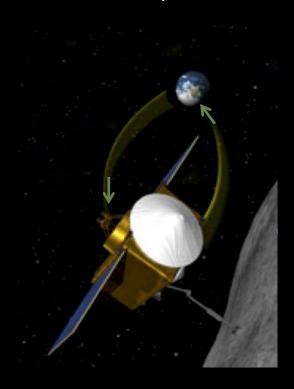
- InSight: Confirmed to begin Phase C on December 6, 2013
- Strofio: Delivered to SERENA Suite (ASI) for BepiColombo
 Missions in Operation
- Dawn: Cruising to Ceres with orbit capture ~March 6
 Missions in Extended Operations
 - MESSENGER: The spacecraft concluded its first hot-planet season of Mercury year 13 on February 28
 - LRO: LRO spent its first three years in a low polar orbit collecting detailed information about the moon and its environment. After this initial orbit, LRO transitioned to a stable elliptical orbit, passing low over the lunar south pole.

New Frontiers Program

1st NF mission New Horizons:


Pluto-Kuiper Belt

Launched January 2006
Arrives July 2015
PI: Alan Stern (SwRI-CO)


2nd NF mission JUNO:

Jupiter Polar Orbiter

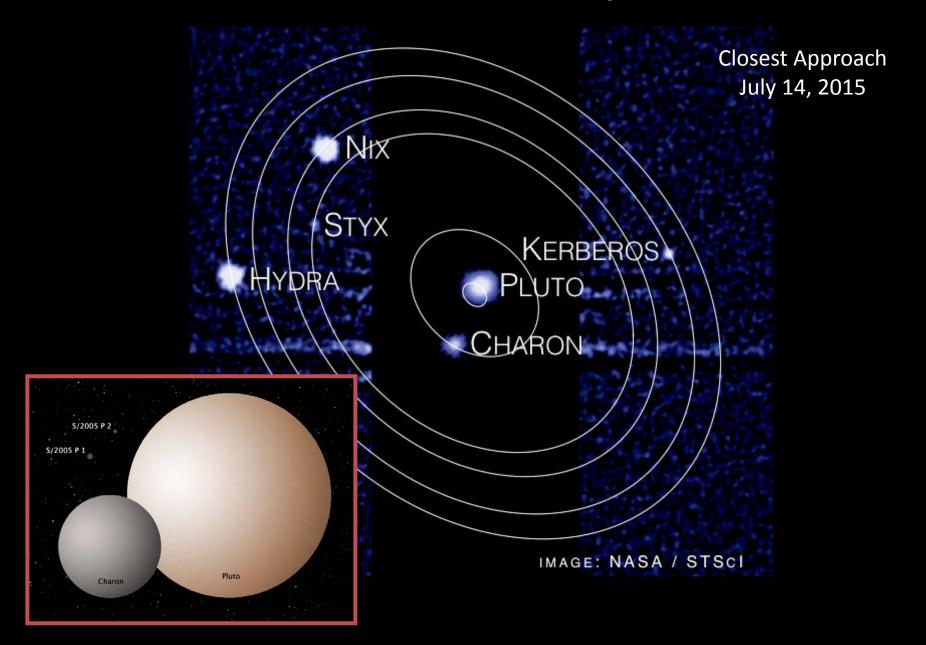
Launched August 2011 Arrives July 2016 PI: Scott Bolton (SwRI-TX) 3rd NF mission OSIRIS-REx:

Asteroid Sample Return

To be launched: Sept. 2016
PI: Dante Lauretta (UA)

Overview of New Frontiers Program

Next New Frontiers AO to be released in Fiscal Year 2016


Missions in Development

- OSIRIS REx:
 - Launch in Sept 2016 & encounter asteroid Bennu in Oct 2018.
 - Operate at asteroid Bennu for over 400 days.
 - Will return a sample (arrives in 2023) that scientists will study for decades with ever more capable instruments and new techniques.

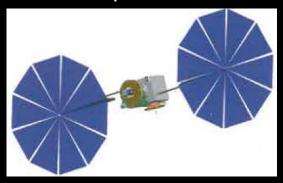
Missions in Operation

- New Horizons:
 - Spacecraft is 31.4 AU from the sun and 1.45 AU from Pluto
 - Pluto system encounter July 14, 2015
 - Using HST observations 2 potential KBO's identified beyond Pluto
- Juno:
 - Earth flyby last October provided a 4 km/s boost
 - Spacecraft is 4.22 AU from the sun and 1.66 AU from Jupiter
 - Orbit insertion is July 4, 2016

The New Pluto System

Pluto-Charon

NH LORRI OPNAV CAMPAIGN 2


2015-01-25 02:01:00 UTC

DISTANCE TO PLUTO: 202976224 km

(PROPER MOTION)

New Frontiers #4 Focused Missions

Comet Surface Sample Return

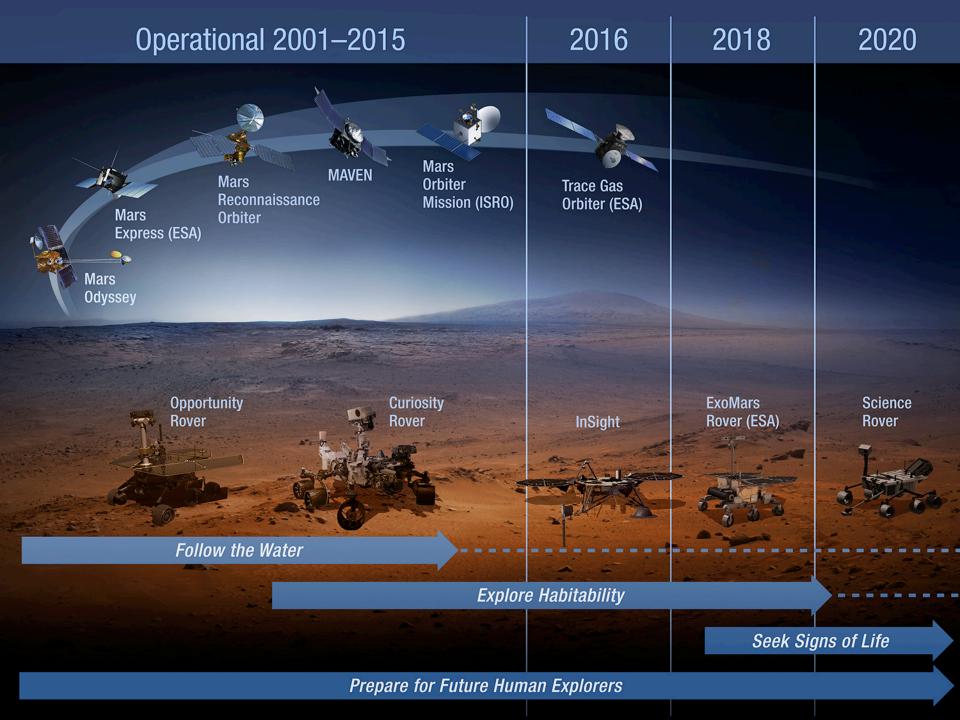
Saturn Probes

Lunar South Pole Aitken Basin Sample Return

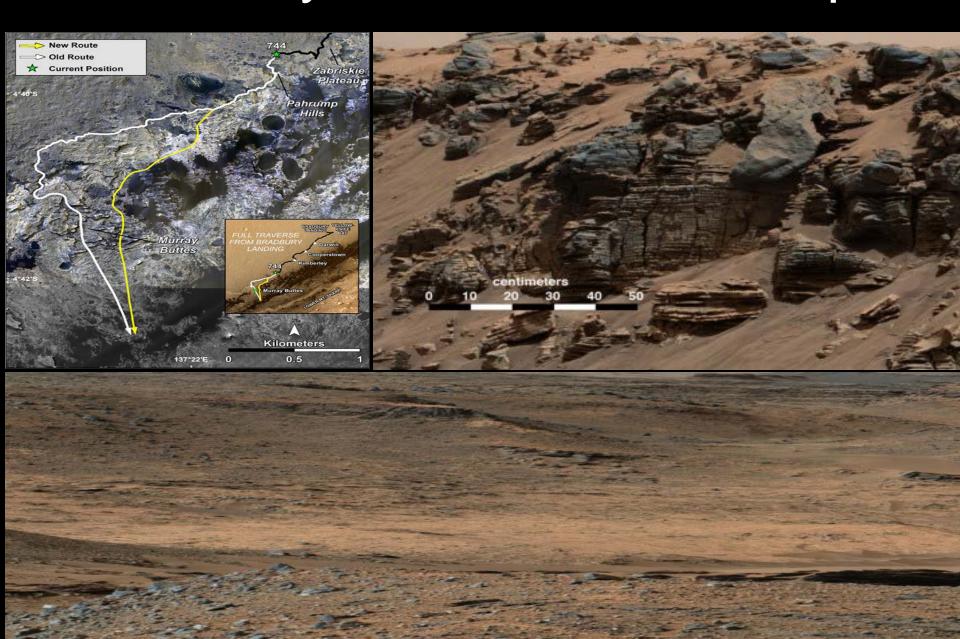
Trojan Tour & Rendezvous

Venus In-Situ Explorer

New Frontiers #5 Focused Missions


Added to the remaining list of candidates:

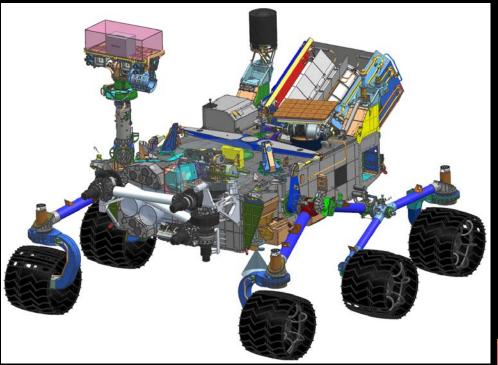
Lunar Geophysical Network



Io Observer

Curiosity Arrives at Mt. Sharp

Seeking signs of life: Mars 2020 Rover


Conduct rigorous in situ science

Enable the future

Geologically diverse site of ancient habitability

Coordinated, nested context and fine-scale measurements

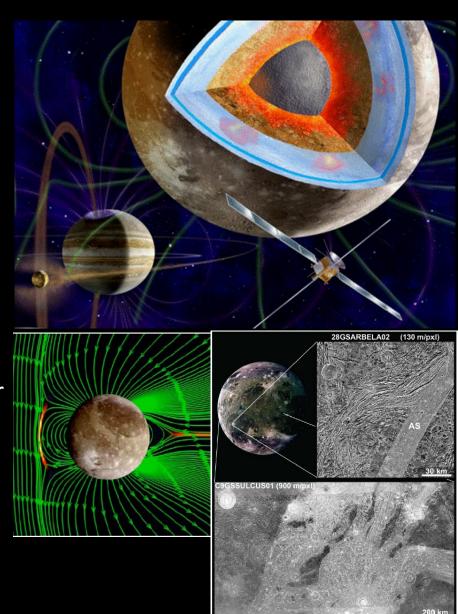
Critical ISRU and technology demonstration required for future Mars exploration

Returnable cache of samples

Outer Planets Missions

Cassini Mission Overview

Four-Year Prime Tour, Equinox Mission, and Solstice Mission (Proposed), July 2004 - July 2017


	Pri	m e l	Miss	i o n	Equino	x Mission	s	o I s	t i c	е	M i s	ssi	o n
Year of Tour	1	2	3	4	5	6	7	8	9	10	11	12	13
	'04-'05	705-706	'06-'07	'07-'08	'08-'09	'09-'10	′10-′11	'11-'12	12-13	'13-'14	'14-'15	'15-'16	16-17
Orbits	11	15	22	27	39	21	16	19	25	12	12	20	56
Titan	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •
	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •
	••	•		• •	•••	• •	•••	•	•••	• •	•••	• •	• •
	*Huygens	•					•		•				
			• •	•		• •				•		•	Proximal Orbits
	1				•	•							
			•										
			•••										
Enceladus													
Eliceladus					3 3			4 4					
						7.7			700				
	6 0							7 7					
Other Icy Satellites		Tethys Hyperion		Rhea		Rhea	Rhea	Dione	Rhea		Dione	Dione	
(under 10,000 km)		Dione		■ lapetus ♥ Epimetheus		Helene	Helene	Dione Tethys			Tethys	Epimetheus G arc	
(Brider re, eee kill)		Telesto		,		∫G arc		Methone				Joane	EOM
		Rhea						Telesto					Sep 15, 2017

Saturn (seen from Sun)

ESA's Jupiter Icy Moons Orbiter Explorer

- On May 2, 2012, the ESA formally selected JUICE as the first Large-class mission in ESA's Cosmic Vision Program
- The JUICE mission will investigate the emergence of habitable worlds around gas giants, characterizing Ganymede, Europa, and Callisto as planetary objects and potential habitats
- JUICE will first orbit Jupiter for ~2.5
 years, providing 13 flybys of Callisto and
 2 of Europa, and then will orbit
 Ganymede for 9 months
- Launch is scheduled for 2022 with Jupiter arrival in 2030 and Ganymede orbit insertion in 2032
- NASA will contribute ~\$100M in instruments and other support

Recent Europa Activities

- Europa mission is present in the President's FY16 Budget
- Instrument selections for Europa mission expected late April
 - Released SALMON 2 PEA in July 2014 to solicit instrument investigations for an unspecified Europa mission
 - 33 proposals currently under evaluation
- Dedicated Hubble time to verify existence of Europa plumes
 - Not confirming their existence does not mean they don't exist. Variability factors are currently not understood.
- Workshop Feb. 18, 2015 with leading astrobiologists and Europa scientists to understand how to look for life
 - Previous 'plume' workshop fully endorsed mission concept and payload
 - Identify 'best' instruments and mission concepts to maximize likelihood of detecting current life if it exists
- Europa mission formulation continues
 - Solar power system selected as baseline
 - Highly successful Mission Concept Review held

Questions?

