Musings on outer planet exploration
Jeff Cuzzi; OPAG 2/19/15

Thanks to P. Agrawal, S. Atreya, K. Baines, P. Estrada, M. Hofstadter, M. Marley,
M. Munk, N. Murphy, M. Tiscareno, E. Venkatapathy, K. Zahnle



Jupiter (1979) Saturn (1980-81)

e Toat o % 3 Y e : ey . Wt 3 e S S i . —
. e -

u raﬂUS(1986)




The Dark Side




Rings: completely new science in Cassini “Grand Finale”

Extended time baseline and wide open , e -
rings for studies of variable structure “Proximal orbits”
and the dense mid-B Ring o \

Measure ring mass directly with 5% (1+) |
accuracy. Supermassive rings can be
easily detected or ruled out this way.
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structural puzzles
protoplanetary disk
dynamical analogs.. 4

..love to go back ..
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Presentation Notes
Upper right - irregular structure in inner B ring. 99000km “red bands” start at right. So, just at the boundary between moderate tau and higher tau where RSS sees “channel structure”. Original Image is 4900 km across; structure typical scale is roughly the ~80km seen by Horn & Cuzzi but smoother in the lower tau regions. Crop shown here is only 4100km across. 

Upper left: C ring plateau structure surrounding Maxwell gap. Broad plateaus are about 300km wide. Image covers about 5100km radial width. 


CONTEXT:
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Rings & ringmoons are
dominated by Roche zone,

within about 2.3Rp



CONTEXT: Satellite systems as a whole dominated by Hill-sphere physics
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CONTEXT: Satellite systems as a whole dominated by Hill-sphere physics

dominated by Roche zone,
within about 2.3Rp
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Satellite system modeling has become very sophisticated,;
need observations to distinguish the models
(Diverse satellite internal structure and composition)
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The even bigger picture: K"’ﬁ
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yformation models can be explanatory & contextual,
but‘have many parameters, :
lire many observational constramts' - A
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Kepler-11 and its family, of (sub)neptunes
- (rock-ice-hydrogen makeup unknown)

+ " Lissauer et al 2011
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Directly
Imaged
Exoplanets

Crude spectra, like
planetary spectra of
a generation ago ...

Quality and number
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USE THIS TO TALK ABOUT HEAT OF FORMATION/ACCRETION

AND THE ROTATION SPEED “DEEP INTERIOR” PUZZLE

ALSO REFER HERE TO EXTRASOLAR PLANETS





Observations of this type are in their infancy. One can envision
movies of deep cloud dynamics with GG-IG comparisons

Courtesy K. Baines
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Presentation Notes
Fig. updated on 8 Sept 2007 by Egeler.
Solar elemental abundances are from Grevesse et. al. (2005), adjusting for protosolar correction (revised 6/9/06), [1] Neon:  Grevesse et al value is derived using oxygen as proxy. Direct Ne data from X-ray stars gives 2.7 times higher solar Ne (Drake, Nature, 2005), so that Grevesse (2005) solar Ne/H should be raised by 2.7, i.e. from 0.7.76 (-5) to 2.1 (-4). Thus, the Jupier/Sun Ne=0.0590.004. [2] Ar value has been changed back to meteoritic/solar photospheric value of 3.6210-6 (Anders and Grevesse 1989, which is nearly identical to the Lodders 2005 value based on Ar/S. This gives Jupiter/Sun Ar= 2.510.50  (09/08/07). Grevesse et al. (2005) derived using oxygen as proxy, same as neon, which gives an erroneous result for these volatiles. [3] He for Saturn from Flasar (CIRS) measurement (07/05/06).   

To make this: Matlab figure must be run on Mac, save Matlab figure as .eps, transfer to my laptop, open the .eps in Illustrator, Export as .tif, in powerpoint insert picture; matlab code uses 1.5 linewidth, 7 markersize; everything else is done in powerpoint (more below)

To get it to fit; just ungroup old figure and delete the matlab part of it (bring to front first). Then resize the new Matlab figure to full screen and copy it onto the slide with all the .ppt stuff. Then open the picture toolbar and make the white background part of the Matlab figure transparent. Then send the matlab part to back, and bring forward 4 times to be able to view the squares on top. 
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Ice Giants: even the S-clouds are deep!
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Deep internal structure

@ EARTH

JUPITER SATURN URANUS NEPTUNE
I Molecular hydrogen B Hydrogen, helium, methane gas
.~ Metallic hydrogen B Mantle (water, ammonia, methane ices)

- Core (rock, ice)



The Deep Interior:
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Origins of gas and ice giant planets and exoplanets*:

Fundamental chemical and isotopic properties
Entry Probes to below NH,SH clouds
Photochemical haze/cloud properties; upper atm structure
C, N, S: arrived as clathrates, ices, adsorbed, or vapor?
Noble Gases (He, Ne, Ar, Kr, Xe & their isotopes)
P, As, Ge..; CO, HCN (chemistry/“eddy diffusion”)?
D/H; Ortho/para-H; 1°N/*“N; C and O(?) isotopes
Deep microwave mapping to get O/S-abundance globally?
Possible on flyby?? ..
Fundamental physical properties
Envelope/core structure with gravity & Doppler Imaging;
“planetesimals” vs “pebbles”? “core dredging”? etc
Benchmarks and ground truth for exoplanets
NIR spectra as functions of phase/time/clouds
Deep or shallow atmospheric dynamics? (GG and IG)

*The opinions expressed here are my own and do not represent any official or unofficial position of NASA,
the US government, or any of the people who shared their expertise with me.



Mission strategy implications*

International collaboration seems both obvious and necessary
Witness success of Cassini/Huygens
NASA and ESA have both done studies and advocacy
for Probe//Flyby missions to Saturn, Uranus, and Neptune

Preference for IG mission vs Saturn mission (DS11; but see below)?
Ignorance level; heavy elements & isotopes; Kepler population

-or??-

Spectral/dynamical mapping: preference for GGs, closer to D.I.P.’s?

Single Orbiter/Probe mission is always attractive (extended
mapping in NIR/uwave, gravity, rings/moons; maybe deep probe?

-or??-

Saturn-to-Uranus probes/flybys (Hof13) with DI on extended approach
with microwave mapping at encounter to get O/S?

New mission technology needing more study
(Agrawal et al 2014; also subm. GCD & EDL)
Aerocapture/braking
Lower-mass thermal protection and components
Onboard “smart” algorithms for entry/braking (eg. Cassini)?

*The opinions expressed here are my own and do not represent any official or unofficial position of NASA,
the US government, or any of the people who shared their expertise with me.






CONCEPT STUDIES FOR URANUS ENTRY
POC: Parul Agrawal, parul.agrawal-1@nasa.gov

MOTIVATION

PROBLEM STATEMENT

A Flagzhip migsion to Uranus,
including an atmospheric entry
probe, has been called out in the
current Decadal Survey as one of
the highest pricrity missions for
the period 2013-2022.

This proposed study will provide
critical ground work in the
preparation for a mid-term update
to the Decadal Survey and ba
useful in determining the viability
of a Uranus mission for future
Mew Fronfiers call

Sevearal constraints posed by the
planat include: 84 year orbital pariod,
wide ring system, significant axial tilt,
poory understood atmosphare

The decadal survey study and
ISPTVENT funded studies do not
provide a wiable mission dasign [

A study that combines science
reqguirament with a comprehensive
frajectory analysis, TPS and other
aniry systam lechnodogies as well

ACHIEVEMENT

E’EVT praject funded concept studies to understand the trade space lui-‘“’l
atmospheric enfry in Uranus and to provide in-dapth analysis of the
mission concept outlined in the 2013-23 decadal survay for the planat

= Maw Uranus atmospheric model creatad

» Trades for entry space was performed for lﬁ
2028 and 3043 arrival windows

« Irwas shown that trajectory and mission & | f"
concams autimed v the Decadal sunssy E
@

were noi a viate option

b
= “Warious existing TPS options wera mp % j_f;
examined for the entry space. | -

AN

I\?_E communications is needed _/.l

« Case study with asrocapture performad e e
L — Entryy(deg)  J/

4

PROPOSED STUDY GOALS

IIIIl'-ln partnarship with MASA ARC, NASA LaRC, JPL and planatary E{:imn;ﬁ'
community, we will parfform trade studies to answer specific guestions
related to Uranus missions by executing the following tasks

1. Dedailed trajectory analysis and mission design concapls that
would avoid the rings, provide shallow entry based on availabla
> TES tachnologias, and address the data communications

2. Addrass the broad science ohjectives by investigating larger
probe options with lawer ballistic coefficiants

3. Infusion of new enabling TPS: woven and conformal

\_ ¢ Examine sensitivily to atmospheric models for aniry technologies Y,

RESOURCES

QUANTITATIVE IMPACT

-

% mitigate tham

Leverage expartisa
from warious NASA
canters including

ARC, LaRC, and JPL

Proposed FY 15
funding

0.5 FTE and $250K

V-

Viable Mission Design

This study will address
open questions from past
sthudies with 8 focus on
trade studies. concapt

viability, identfyng high
risk elaments, and

demonstrating ways to

.

L

A

Enabling Science
Ag part of trades we will

study larger probss with
lower ballistic coefficients )

The proposed concept studies will fullfill the current knowledge gap and provide a technology
platform that will enable future Flagship, New Frontier and lower cost mission to Uranus



]

Objective
= Develop viable mission design solutions to outer planets

{=aturn and Uranus) with low to mid density ablators that
include PICA variants and HEEET

Significance/impact

= Previous lce Giant entry concepts only considered heritage
carbon-phenolic (C-P)
= Carbon-phenolic has a host of well documentad issues including
cosi, waight, and the inability to produce C-P heritage matarnal due
to missing hieritage constitusnts. It is also not suitable for shallow
antries.
= PICA variants and HEEET would address the TPS gap by
praviding a mass effective solution over a large trade space
for planetary entry missions

Key Milestones:

= Leverage existing R&D efforts on HEEET and PICA variants to
establish performance envelope and limits.

= |Investigate mission trade space (entry flight path angle,
deceleration loads, peak pressure, etc) for these ablators.

= Detailed trajectory analysis and mission design concepts
incorporating constraints such as ring avoidance, data
communications, and shallow entries using PICA and HEEET
technologies

Partners:
= JPL, NASA LaRC, SMD and Planetary Science community

Mission Infusion Potential:

= The proposed concept studies will fulfill the current knowledge
gap and provide a technology platform that will enable future
Flagship, New Frontiers class mission to Satum and Uranus

Low to Mid Density Ablators for Quter Planets SUBMITTER: Parul Agrawal

(parul.agrawal-1@nasa.gov)

Entry trades for Uranus for 130 kg probe

sl ¥ A A ‘peak
c?" stagnation
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oad

Example of
entry space
for trajectory

Ballistic Coefficient (Kg/m?)
z

&0 35 ) ) 0 optimization
Entry Flight Fath Angle (deg)
Funding Information:
All 5K FY16 FY17 Total
ARC
FTE # 1.0 1.0 2.0
WYE # 1.0 1.0 2.0
Travel, §K 15 15 30
JPL
WYE # 0.5 0.5 1.0
LaRC
FTE # 0.5 0.5 1.0
Travel, $K 5 B 10

For MASA internal Use Only
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Current thinking on Ring origin

The low current meteoroid mass flux no longer requires and may preclude a
young ring age. Much larger fluxes are expected during LHB and primordial
era, so primordial ring would need to be much more massive than current ring.

Present locations of “ringmoons” are still a puzzle but resonant interactions,
collisions, reaccretion might frustrate their outward torque-based evolution.

At least the A and B Ring parent(s) must be nearly pure ice. Saturn system
has other examples of large, nearly pure ice bodies (lapetus, Tethys).
Disruption of a differentiated body and loss of the core have long been
advocated to explain this. C Ring might be younger/derivative. BUT there is
some widespread non-icy UV absorber (PAH/organlc or Fe/hematlte related).

Recent scenarios involve tidal migration and / T ..... =
disruption of Titan-sized rlng “grandparent”/
to create a Rhea-sized ring “parent”, e L
which evolves in later and is again disrupted:
Mosqueira/Estrada scenarios grow the Rhea-
sized parent in situ directly. Formation of [ TR _
satellite systems is an active area of study. =, xR ~

I Canup2009 1

I , . |
-100 0 100




Observed in the 5 um window, Saturn shows complex cloud
and dynamical band structure; this work is in its infancy
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Patience Is a virtue!
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