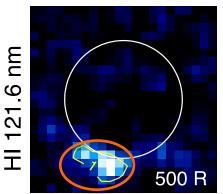
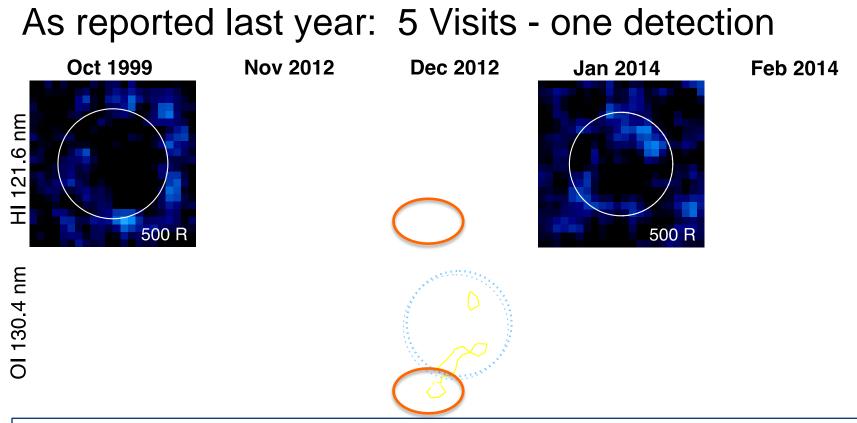
An Update on the Hubble Cycle 22 Campaign to Investigate Europa Water Vapor Plumes

Lorenz Roth*, Kurt Retherford, Joachim Saur, Darrell Strobel, Melissa McGrath, Francis Nimmo, Paul Feldman, John Spencer, Aljona Blöcker


*Now at Royal Institute of Technology, KTH, Stockholm, Sweden

Coincident Lyman-α and OI 1304 Å surpluses near the south pole

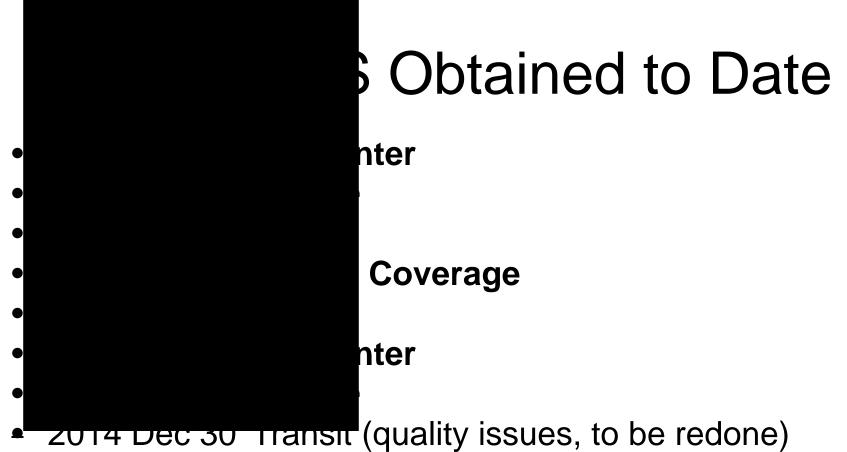

- Roth et al, Science, 2014 (and Supplement)
- Lyman- α surplus at south pole of ~600 R (4.0 σ)
- Coincident OI 1304 Å surplus of ~30 R (2.4 σ)
- $e^- + H_2O \rightarrow H^* / O^* \rightarrow hv_H / hv_O$

HI 1216 Å : OI 1304 Å : OI 1356 Å 20 : 1 : 0.3 (Makarov et al. 2004)

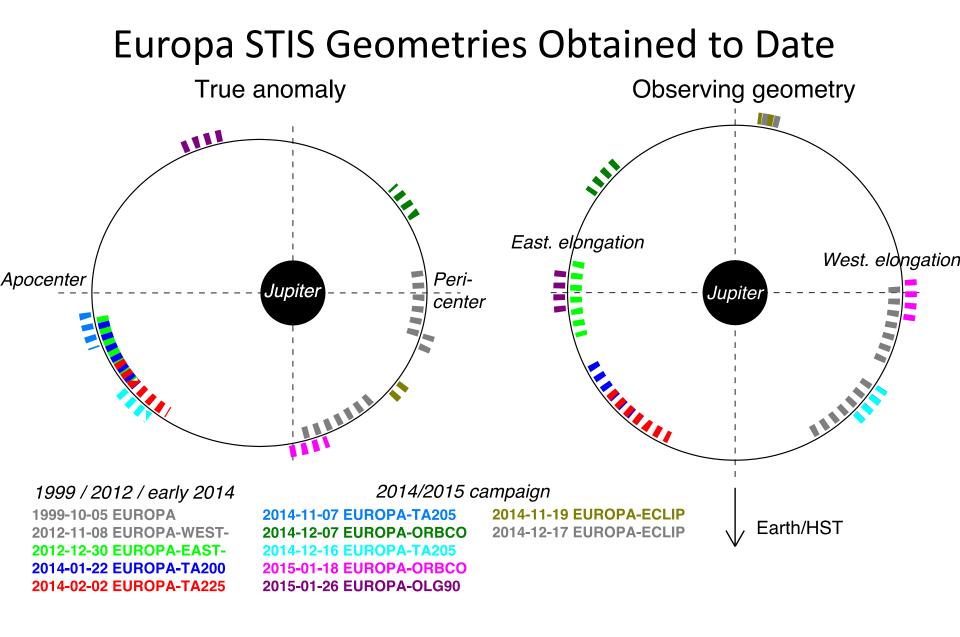
 Similar diagnostic H₂O line ratio for atomic emissions detected by Rosetta Alice at Comet 67P/ CG (Feldman et al., AGU, 2014)

- Coincident hydrogen and oxygen ~200 km-high emission surpluses in Dec 2012 ➤ H₂O aurora from plumes remains only viable explanation
- Roth et al., "Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora", PNAS, Vol. 111 no. 48, 2014

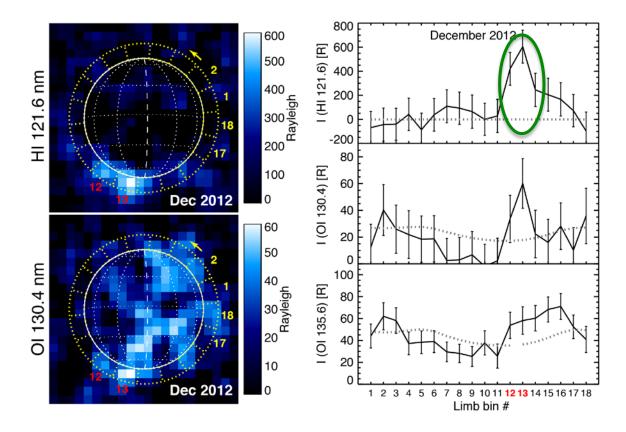
Potential variability of source activity / detectability


Roth et al. GO program 13679 investigates whether:

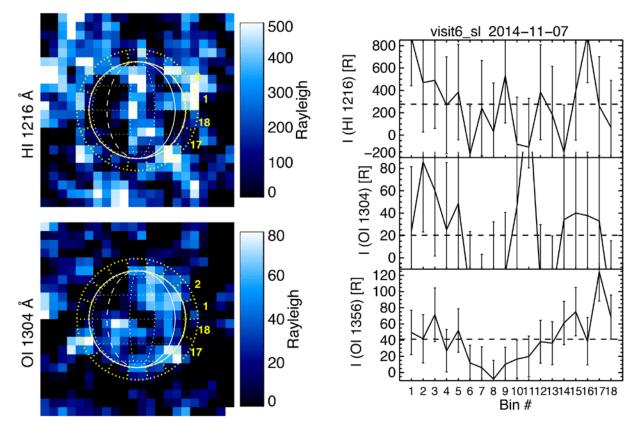
- 1. Plume activity varies with tidal stresses?
- 2. Plume activity for an individual vent source is **episodic?**
- Plume aurora signals are detectable only when the variable electron density and energy environment is suitable?
- Plumes near Europa's south pole are detectable only when the <u>line-of-sight geometry / time of day</u> is suitable?


Ongoing STIS campaign 2014/2015: 58 orbits in ~20 HST visits - including new eclipse & transit observations

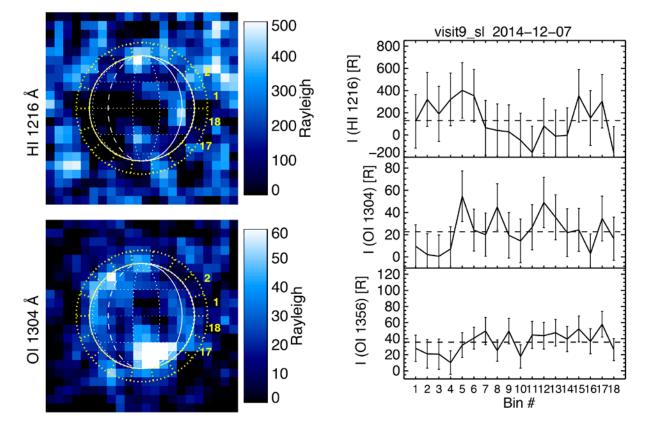
S Obtained to Date	
• nter •	No striking / evident plume signal detections
Coverage	
• nter	50% of observations taken – analysis in progress.
	une to be redone)


- ZUT4 Dec 30 Transit (quality issues, to be redone)
- 2015 Jan 18 Orbital Coverage
- 2015 Jan 26 Orbital Elongation 90
- 2015 Jan 27 Transit

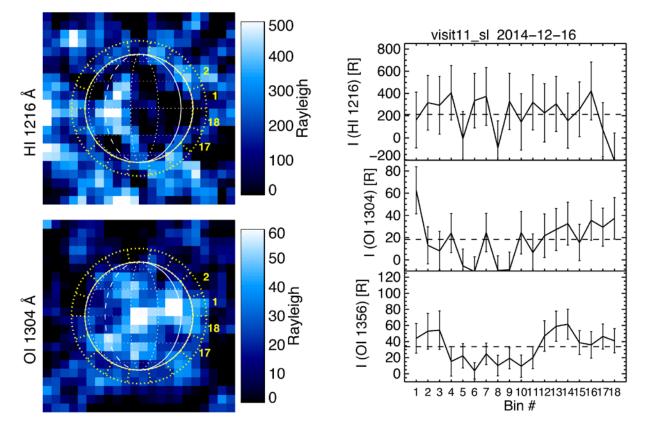
- 2015 Jan 18 Orbital Coverage
- 2015 Jan 26 Orbital Elongation 90
- 2015 Jan 27 Transit



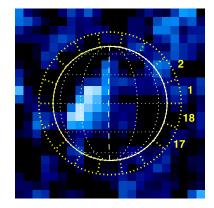
Limb analysis of Dec 2012 detection

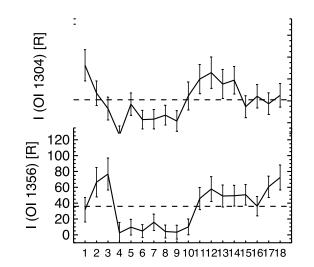

- Analysis of brightness in 20°-wide bins around the limb
- Emission surpluses of <u>600 R</u> Lyman-alpha in limb bin consistent with 200 (±100) km high water vapor with column of <u>~1.5 x 10¹⁶ cm⁻²</u>

Visit 6 – Nov 7 – Apocenter

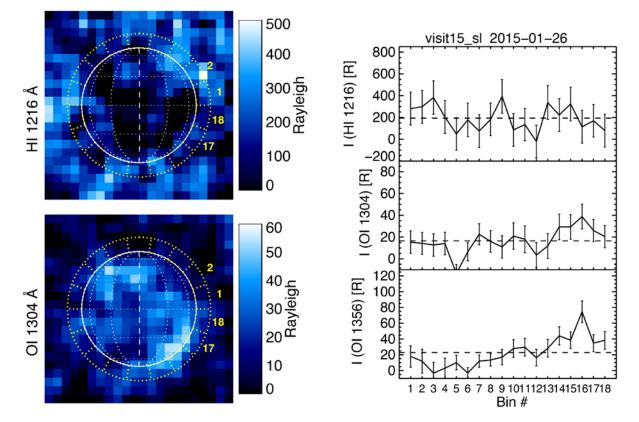

- Geocoronal background extremely high
- Constraints on H2O abundance: $N_{H2O} < 3 \times 10^{16} \text{ cm}^{-2}$
- Dec 2012: 600 R Lyman-alpha / $N_{H2O} \sim 1.5 \times 10^{16} \text{ cm}^{-2}$

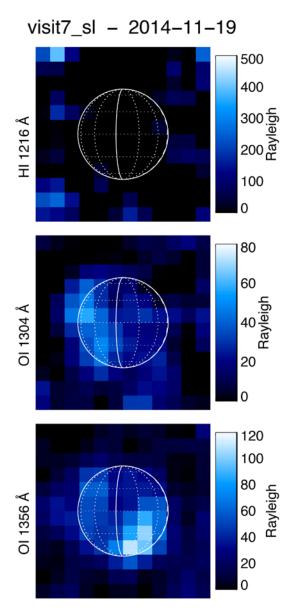
Visit 9 – Dec 7 – Sub-Jovian/leading hemisphere


- Geocoronal background moderate
- Constraints on H2O abundance: $N_{H2O} < 1 \times 10^{16} \text{ cm}^{-2}$
- Dec 2012: 600 R Lyman-alpha / $N_{H2O} \sim 1.5 \times 10^{16} \text{ cm}^{-2}$


Visit 11 – Dec 16 – Apocenter

- Geocoronal background moderate
- Constraints on H2O abundance: $N_{H2O} < 1 \times 10^{16} \text{ cm}^{-2}$
- Dec 2012: 600 R Lyman-alpha / $N_{H2O} \sim 1.5 \times 10^{16} \text{ cm}^{-2}$

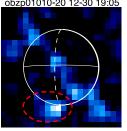

Visit 14 – Dec 16 – Max Western Elongation


- Geocoronal background low
- Constraints on H2O abundance: N_{H2O} < 0.5 x 10¹⁶ cm⁻²
- Dec 2012: 600 R Lyman-alpha / N_{H2O} ~1.5 x 10¹⁶ cm⁻²

Visit 11 – Dec 16 – Apocenter

- Geocoronal background low/moderate
- Constraints on H2O abundance: $N_{H2O} < 1 \times 10^{16} \text{ cm}^{-2}$
- Dec 2012: 600 R Lyman-alpha / $N_{H2O} \sim 1.5 \times 10^{16} \text{ cm}^{-2}$

Eclipse visits

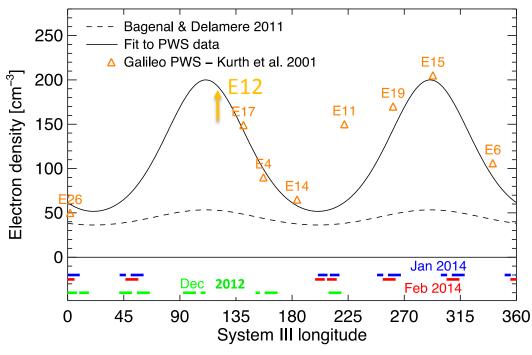

Summary

- Hubble observations do not allow strong constraints on H₂O abundance
- Detection potentially a combination of ideal conditions for plasma environment AND plume activity
- Still need a repeated detection with Hubble and/or other observatories to confirm the plume existence
 - No apparent reason to discount the initial plume assessment in the meantime
 - Other ideas for testable hypotheses are welcome
 - We'll follow the scientific method where it takes us

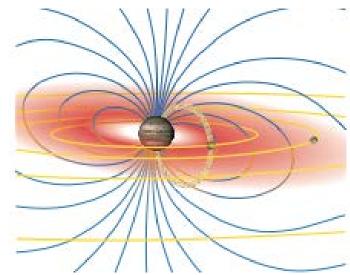
"Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora" (Roth et al., PNAS, 2014)

Impact generated plume?

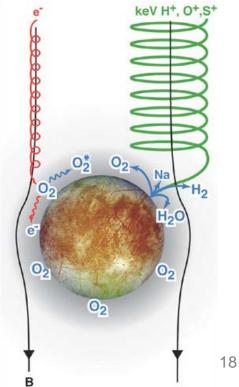
- The total H_2O mass: $\sim 3 \times 10^6$ kg
- Lifetime in plume: ~20 min
- STIS images:
 ~ 7 hours
- Impact diameter: ~7 m
- Impact probability:
 ~ 10⁻² y⁻¹ (Zahnle+ 2003)
- Similar 1 per
 >80 yr timescale
 for impact melts



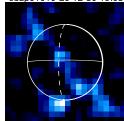
Highly-unlikely Hubble coincidently viewed such an event, but not entirely impossible


p01010-20 12-30 19:05 obzp01030-40 12-30 20:29 obzp01050-60 12-30 22:05 obzp01070-80 12-30 23:41 obzp010a0-a0 12-31 01:30

Variability of plasma environment


- Observations over ~7 hours (5 HST orbits)
- Similar coverage of periodic variations of plasma environment in 2012 and 2014
- Aperiodic variations of plasma environment? Flyby E12 density ~650/cc is off the chart!

Retherford et al. Europa HST plume observations


~11.5 hour period

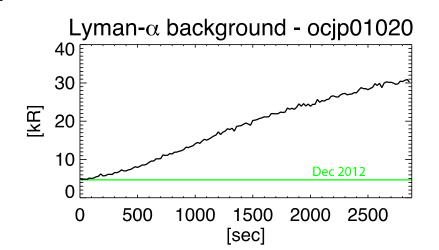
Simply a Noise Signal Misinterpreted?

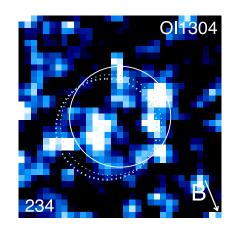
- Detectable signals persist for 5 orbits (~7 hours)
 - With multiple detected occurrences in a row this noise explanation is unsatisfactory
- Roth et al., Science, 2014 Supplement details three rigorous statistical approaches
- Unlike the O₂ aurora, the H₂O aurora features do not rock with Jupiter's magnetic field orientation
 - Several dozen similar lo and Ganymede STIS
 G140L datasets show no signs of a ~600 R Lyα feature above the limb
 - Likely not proton aurora
 - Brightens in plasma sheet

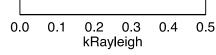
obzp01010-20 12-30 19:05 obzp01030-40 12-30 20:29 obzp01050-60 12-30 22:05 obzp01070-80 12-30 23:41 obzp010a0-a0 12-31 01:30

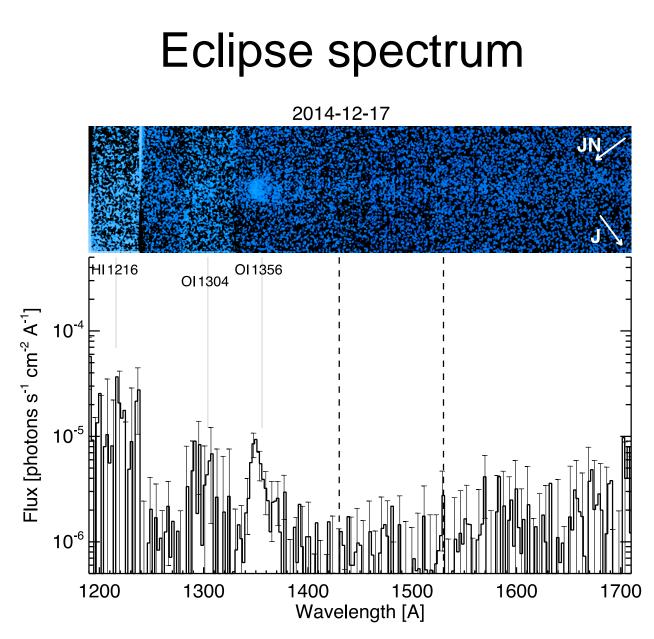
Upcoming STIS Europa Visits

- 2015 Feb 22 Orbital Coverage
- 2015 Feb 24 Orbital Elongation 90
- 2015 Feb 25 Transit
- 2015 Mar 9 Orbital Coverage
- 2015 Mar 21 Apocenter
- 2015 Mar 28 Apocenter
- 2015 Mar 30 Transit
- 2015 April 3/14 Eclipse
- 2015 May 2 Eclipse
- 2015 TBD Transit (a redo of Dec 30)

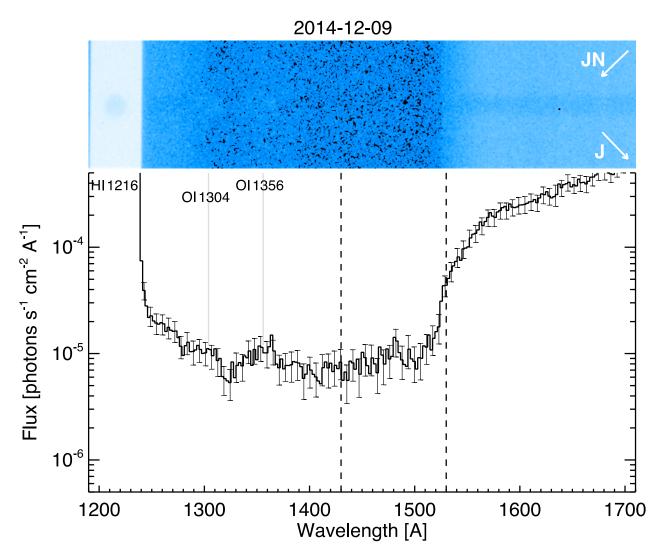

Backup


Recent / upcoming HST Europa observations


- GO 13679: Roth et al. STIS G140L FUV spectral imaging of:
 - Hydrogen and oxygen aurora in sunlight
 - Hydrogen and oxygen aurora in eclipse of Jupiter
 - H Lyman-a Jupiter dayglow absorption in transit
- GO 13829: Sparks et al. STIS FUV imaging of absorption in Jupiter transit
- GO 13803: McGrath et al. High resolution spectra of Europa's atmospheric composition – spectra not suitable to look for localized H/O emissions

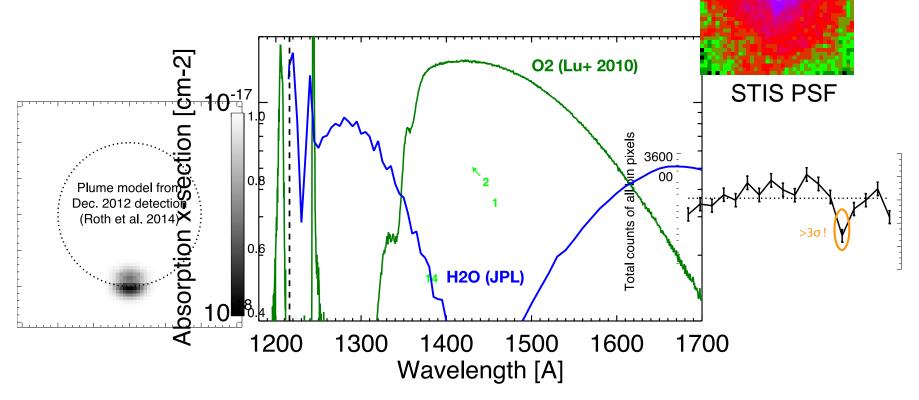

First visit of new campaign

- at apocenter 7 Nov 2014
- Very high geocoronal noise: ~15 kR Ly-a on average (Dec 2012: < 5 kR)
- No reasonable constraints on H₂O abundance
- Geocoronal noise will go down closer to opposition (Feb 6, 2015)



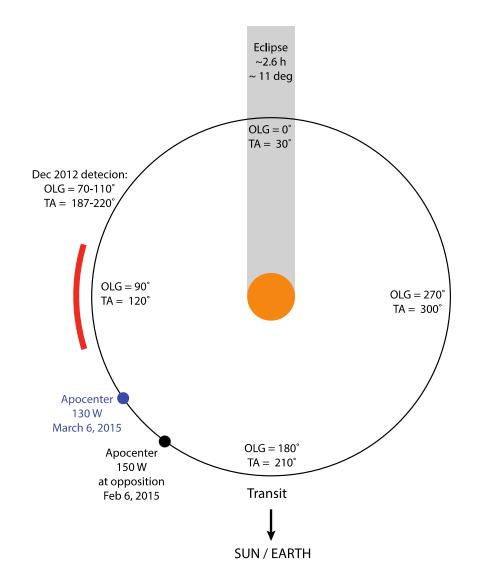
Roth et al.: HST plume observations

First transit FUV spectrum

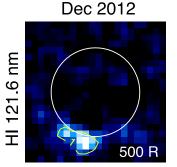


Roth et al.: HST plume observations

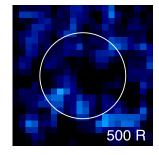
Transit Observations

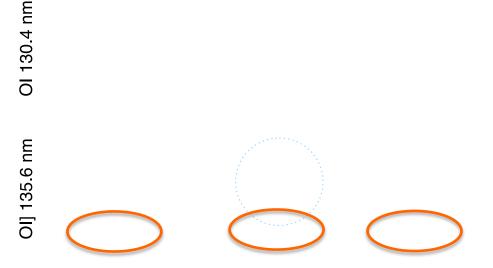

<u>12</u>16 Å

- H_2O plume column density > 10^{16} cm⁻²
 - $\sigma_{Ly-a}(H_2O) = 1.5 \times 10^{-17} \text{ cm}^2 > \tau > 0.15$
 - σ (H₂O) < 10⁻¹⁷ cm for all wavelengths > 125 nm

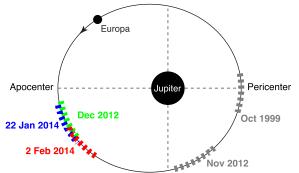

Geometrical parameters / observing conditions

- Jupiter opposition: 6 Feb 2015
- True anomaly TA: Tidal stresses are function of TA (Dec2012: TA=200°)
- Orbital longitude /viewing geometry: Line-of-sight effects might favor plume detection (Dec 2012: OLG=90°)
- Next OLG=90° & TA=200° occasion: May 2015
- Europa in transit at TA=200°




Variability of plasma environment

- Comparing O_2 and H_2O aurora: $e^- + O_2 \rightarrow ... \rightarrow hv_O$ (OI 1304 Å + OI 1356 Å) $e^- + H_2O \rightarrow ... \rightarrow hv_H / hv_O$ (HI 1216 Å + OI 1304 Å)
- O₂ aurora near south pole
 2x lower in 2014 than in Dec
 2012
- Due to changing abundance of energetic electrons above southern hemisphere?
- 2x lower H₂O abundance still required to explain 4x lower Ly-α



No pronounced H and O emissions detected at the southern limb in early 2014

- Upper limit on southern Lyman-α flux:
 <u>~4 times lower than in Dec 2012</u>
- Lower H₂O abundance or lower electron excitation, or both?
- Constraints on H₂O limb abundance: $N_{H2O} = (0 - 5) \times 10^{15} \text{ cm}^{-2}$ (Dec 2012: 1.5 × 10¹⁶ cm⁻²)
- Timed to coincide with maximum tensile stresses on south polar region

Ol] 135.6 nm Ol 130.4 nm

2014