

Expanding Science with SmallSats/CubeSats

Outer Planets Analysis Group

John D. Baker 2/2/2016

Introduction

- Advances in satellite technology and sensor miniaturization have JPL looking at what could CubeSats/SmallSats do for Planetary science.
- A new class of <u>small</u> and <u>low cost</u> robotic probes to perform focused high priority science investigations and instrument technology demonstrations is now possible.

EXPLORER

INSPIRE

Potential Science Applications

that we have thought of so far

Fields and particles

- Distributed/simultaneous magnetic field for dynamic processes
- Dust and gas/plume composition
- Radiation
- Plasma characterization

Atmospheric Science

- Distributed atmospheric measurements
- **Atmospheric composition (noble gases)**

- High-risk site study and reconnaissance leg crevasses, landing sites, caves, etc.)
- **Object characterization**
- Water search

In-Situ (small bodies)

- Elemental, Isotopic & Mineralogical composition
- **Regolith mechanical properties**
- **Surface dust dynamics**

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

THEME

(SKGs)

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

KEY MEASUREMENTS

Decadal Science Mapping and Instrument Availability

Origins	Isotopic, elemental, mineralogical composition	In situ (atmospheres, surface)	APXS, TLS, IR spec, Raman, LIBS Submm spec, UV Spec, Gamma ray spec, Dust spec, MassSpec
		Returned sample (small bodies)	Sample Return Capsule (possibly Acquisition as well)
Planetary Habitats	Volatile, organics composition, endogenic activity, heat budget, env	In situ, distributed network, subsurface (e.g., penetrators)	MassSpec, micro-XRF, Geophysics Inst., imaging, IR spec, seismometer
Processes	Atmospheric structure, dust, fields, geology	Close proximity, in situ, distributed networks	Cameras, IR spec, Mag, Transponders, Langmuir probes, MassSpec, TLS, dust counter, plasma
Human Exploration	Dust, fields, radiations, Dynamical properties,	Close proximity, in situ, extreme environments	Dust Counter, imaging, APXS, Geophysics Inst., accelerometers

OBSERVATION

STRATEGY

Mechanical properties,

ISRU (composition)

Subsurface probing, neutron spec, IR

spec, radar, seismometer

MICROSAT-COMPATIBLE

INSTRUMENTS

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Current Capabilities and Investments

<u>Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment</u>

PI: Dr. Andrew Klesh, Jet Propulsion Laboratory PM: Ms. Lauren Halatek, Jet Propulsion Laboratory

University Partners:

- U. Michigan Ann Arbor
- Cal Poly San Luis Obispo
- U. Texas Austin
- U. California Los Angeles

Collaborator:

Goldstone-Apple Valley Radio Telescope (GAVRT)

Technology Demonstration Mission Objectives:

- Demonstrate and characterize key nanospacecraft abilities including DSN-compliant telecommunications, navigation, command & data handling, relay communications, and deep-space reliability / fault tolerance
- Demonstrate science utility (Compact Vector Helium Magnetometer & Agile Science Algorithms)
- Technology demonstration platform for low-cost COTS / university components

INSPIRE Flight Spacecraft

Completed I&T on Cost and Schedule in June 2014

Predecisional - For Discussion Purposes Only

Lunar FlashLight Overview

To detect surface ice deposits in south pole lunar cold traps

Measurement Approach:

PI: Barbara Cohen

- Lasers in 4 different bands illuminate the lunar surface with a 3 deg beam (1Km).
- Laser light reflected off the lunar surface enters the reflectometer to distinguish water ices from regolith.

Teaming:

- JPL-MSEC
- S/C 6U 11 kg: JPL

I&T: JPL

- Mission Design & Nav: JPL
- **Propulsion:** 'Green prop' (MSFC)
- Payload: 4 laser bands and reflectometer

Orbit:

Elliptic: 15-9000Km

Period: 12hrs

• Perilune: South Pole

• Sci Pass: <6min_

Milestones/Phases

SLS EM1, 7/2018 • Launch:

L+6 months • LOI:

2-4 months • Orbit:

Mars Cube One (MarCO)

8 kbps EDL telecom relay for InSight

Two Spacecraft in 14 months

Pre-decisional – for discussion purposes only

Planetary NanoSat Concepts

Recent Studies

Europa

- 10 Universities were funded to do studies pre-instrument selection.
- Europa science measurements requested/responses:
 - Landing site reconnaissance 1
 - o Gravity Science 0
 - Magnetic fields 5
 - Atmospheric and plume Science (dust composition, gas composition, isotopic composition) – 2
 - o Radiation Measurements 2
- Results were innovative!

Tailoring Form Factor to Different Applications

Atmospheric Probe

Small Body Hoppers
(Hedgehog, Stanford/MIT/JPL; POGO, APL)

(MarsDrop, Aerospace, JPL) Predecisional - For Discussion Purposes Only

Conclusion

- Smallsats/CubeSats have the potential to enable decadal-class science
 - Innovative capabilities (instruments and engineering) are being created
- We have found that these kinds of missions are a great training ground for early career hires
- In the future, these kinds of missions will present greater opportunities for Universities and students to develop probes and perform planetary science