Planetary Science From Stratospheric Balloons

OPAG- January 13, 2014
Karl Hibbitts, JHU –APL
Eliot Young, SWRI
Addressing Decadal Survey Science

- being summarized in a report to the PSD -

<table>
<thead>
<tr>
<th>Category</th>
<th>Total # of DS “Important Questions”</th>
<th># Answered or significantly addressed</th>
<th>% Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primitive Bodies</td>
<td>33</td>
<td>10</td>
<td>30%</td>
</tr>
<tr>
<td>Inner Planets</td>
<td>34</td>
<td>10</td>
<td>29%</td>
</tr>
<tr>
<td>Giant Planets</td>
<td>39</td>
<td>7</td>
<td>18%</td>
</tr>
<tr>
<td>Satellites</td>
<td>75</td>
<td>13</td>
<td>17%</td>
</tr>
<tr>
<td>Mars</td>
<td>18</td>
<td>4</td>
<td>22%</td>
</tr>
<tr>
<td>Total</td>
<td>199</td>
<td>44</td>
<td>22%</td>
</tr>
</tbody>
</table>

- The number of questions does not account for importance or priority. Answering a single question may justify an entire mission.

- Each question does not require a separate mission. In all likelihood, a single mission will address multiple questions.

A balloon platform offers a multi-target / crosscutting capability to address a wide range of decadal science objectives.
Science Achievable vs Platform Capability

A system with the indicated features could address 15% of Decadal Survey “Important Questions”

Significant science is achievable with modest system
I. Near Ultraviolet - Visible

- Space like seeing.
- The near UV from ~195nm to 225nm and from ~285 nm and longward.
- Reduced Rayleigh scattering may enable daytime observations.
The Stratospheric Advantage
II. Shortwave - Mid IR

- Excellent transmission.
- Considerably lower downwelling radiance → long integration times.
- Typical aperture (1-2m) well-suited for diffraction level imaging.
The Stratospheric Advantage

III. Thermal IR

- Transmission ~ 100%
- Downwelling << than for airborne/ground → long integration times.
- Low TSE with optics temperatures ~ -50C.

Disadvantage: Limited light gathering and spatial resolution of 1-2 m aperture.
Current Status

• PSD has been assessing stratospheric balloon platforms and is moving toward a goal of:

 Developing a reusable platform to achieve high-value planetary science which takes advantage of the extremely high altitude, advanced pointing capabilities, and the low cost of balloon-borne missions. BRRISON is a part of that effort.

 — Relatively low cost
 — Enables observations not otherwise possible
 — Engages planetary science community, especially valuable at early career stages
Balloon Rapid Response for ISON (BRRISON) Mission Overview
BRRISON Objectives

- Develop and demonstrate gondola and payload systems for a balloon-borne platform designed to achieve planetary science.
- Demonstrate NUV/Vis imaging and operation of Fine Steering Mirror (FSM) for obtaining sub-arcsec pointing stability.
- Provide high-value science
 - Primary: Measure CO$_2$ and H$_2$O and determine their ratio for ISON
 - Secondary: Repeat for Encke; Characterize the water in asteroids, Jupiter’s atmosphere.

ISON imaged by Gemini Multi-Object Spectrograph, Gemini North
BRRISON Gondola

- Azimuth and Attitude stabilized gondola with 80-cm telescope
- Two instruments on separate optical benches
 - APL developed IR camera (BIRC) for imaging 2.5 µ to 5µ
 - SWRI developed UV-Vis camera (UVVis) with fast steering mirror and fine guidance system
- Light is sent to either UVVis or BIRC (not both)
- Payload in stowed position is enclosed within gondola frame
Rapid Response Development

STO flight Jan 2012

BRRISON Review Mar 2013

June-July 2013

Sept-Oct 2013
BRRISON Flight

• Arrived at Ft. Sumner, NM on 9/9
• Performed telescope alignment & reassembly of the gondola. Finalized testing
• Hang tests on 9/26
 • All systems performed well
• Flight Readiness Review on 9/27
 • Launched 9/28, a rare afternoon launch due to weather
• Experienced a telescope position anomaly early in flight which prevented ISON and other science observations
BRRISON Accomplishments

- Demonstrated required gondola performance during hang tests.
- Demonstrated required FSM performance during hang test.
- During float, operated VNIR and MIR cameras as designed for extended period providing calibration information.
- During float, demonstrated ability to point with telescope and acquired sidereal target.
- During float, demonstrated successful operation of gondola components other than telescope.
The Optical Telescope Assembly (OTA) became trapped in its stowed position

Anomaly was due to combination of three causes

- Communication between gyros and heritage computers was interrupted (connection integrity).
- The loss of data resulted in software incorrectly driving the telescope assembly into its stowed position at full torque
- The latch mechanism, while a heritage design, had insufficient structural strength to handle this anomaly condition, deflecting and trapping the stow bar
IR Camera (BIRC)

- “Hang” tests at launch site demonstrated arc second pointing platform
 - The IR camera imaged the bright star ζ Pers and its companion BD+31 666C. Companion is 8.5 mag fainter and ~15 arc sec away.

- IR camera imaged Polaris (α UMi) in flight

Stars and Moon imaged during hang tests

Moon 2.47 & 4.0 μ

340 km (BIRC FOV = 3’)

Polaris R-band, 100 ms integration time

Star imaged in flight by IR camera (star is saturated)
IR Camera (BIRC)

- Ground calibration tests \rightarrow time to saturation ranges from 100s millisecond (CO$_2$ band) to many seconds, especially long at 2.45 to 3.2 microns.

- With Target Plate: -73°C. X-axis scale: 0 to 5 seconds.
The UVVis Guide Camera and Fine Steering Mirror corrected two types of errors:
- Image blur due to atmospheric turbulence. From focus sweeps, we find a minimum image FWHM of 3” at best focus.
- Pointing errors due to telescope motion (RMS motion was about ±15” during the hang test).

Results:
- Pointing errors for the full field (60”) were determined at 50 Hz (100 Hz for a 40” FOV) and sent to the FSM. This is much faster than the goal of 20 Hz.
- The FSM corrected all detectable telescope image motion and, further, reduced the blur due to seeing to 1.5”. This 50% reduction of the FWHM is the theoretical improvement that can be attained by a tip-tilt system!
Super-pressure balloons float near 110,000 ft; zero-pressure balloons float near 125,000 ft (above 99.3 or 99.6% of the atmosphere, respectively).

Best evidence for space-like image acuity at Visible and UV wavelengths: results from the Sunrise balloon missions.
The Sunrise balloon missions carried a *Correlating Wavefront Sensor* to control a tip-tilt fine steering mirror, but the CWS also measured other distortions.

- CWS results: no atmospheric degradation was seen – the telescope might as well have been in space.
- Diffraction limited PSF width: 0.12” at 0.5 µm for a 1-m mirror.
Two main obstacles to diffraction limited imaging:
- Pointing and stabilization of the telescope & focal plane.
- Overcoming thermal distortions.

Several groups (WASP, Sunrise, STO) have demonstrated telescope stabilization at the few arcsecond level plus FSM correction to tens of mas.

Day/night thermal effects:
- MLI is not very effective in the stratosphere – you need thicker insulation.
- Preliminary modeling indicates that 20 cm of “Styrofoam” can lower the OTA temperature by about 40 K.
- Two potential advantages of thermal blanketing schemes: possible use of cheap COTS telescopes, and reduced thermal background for IR spectroscopy in L and M bands.
Two main obstacles to diffraction limited imaging:
- Pointing and stabilization of the telescope & focal plane.
- Overcoming thermal distortions.

Several groups (WASP, Sunrise, STO) have demonstrated telescope stabilization at the few arcsecond level plus FSM correction to tens of mas.

Day/night thermal effects:
- MLI is not very effective in the stratosphere – you need thicker insulation.
- Preliminary modeling indicates that 20 cm of “Styrofoam” can lower the OTA temperature by about 40 K.
- Two potential advantages of thermal blanketing schemes: possible use of cheap COTS telescopes, and reduced thermal background for IR spectroscopy in L and M bands.
- OTA at 235 K: a 1-m aperture beats the 3-m IRTF at 4.8 µm.
2014 Potential Science Return

- Observable from Kiruna in summer: Oort Cloud comet C/2012 K1; Ceres, Vesta, Uranus, Neptune; Moon (depending on launch date)
 - Comet C/2012 K1 (PanSTARRS) is observable continuously 24/7; allows first-ever measurement of rotational light curves in water and CO$_2$ emissions from an Oort Cloud comet
- Observable from Fort Sumner in fall: Oort Cloud comets C/2013 A1 & C/2012 K1; Ceres, Vesta, Uranus, Neptune; Moon (depending on launch date)
 - Comet C/2013 A1 (Siding Spring) is observable within a few weeks of the Mars close encounter which will be observed by Mars spacecraft; and Comet C/2012 K1 (PanSTARRS) is observable, but neither can be observed continuously
- Both Kiruna and Fort Sumner flights offer excellent science
 - Kiruna flight offers discovery potential from a first-ever observation
 - Fort Sumner flight offers two comets and night time (dark sky) observations for UVVis extended exposures
 - Both Oort Cloud comets are much brighter than ISON for both flight opportunities
 - Both flights can observe Ceres and Vesta in support of the Dawn mission shortly before the Ceres encounter
Super-pressure balloons are vented. They lose helium (and must drop ballast) every day/night cycle.

Super-pressure balloons are sealed and reinforced to sustain pressure gradients. NASA encourages proposals for 100-day flights, possibly launched from New Zealand.
Decadal class planetary science can be achieved from stratospheric balloons
 - Unique contributions, low cost, opportunity for frequent and long duration flights.

Rapid cadence & low costs present potential for young career scientists to participate on missions and demonstration of new measurement approaches.

A reflight in 2014 would be a second opportunity to demonstrate unique and compelling science can be realized for a very low cost by leveraging the gondola and instrument systems developed for Comet ISON.

Comments to 2014 science options? Or Questions?