Cosmic Vision Outer Planet Mission (OPM)
TSSM: Titan/Saturn System Mission
EJSM: Europa/Jupiter System Mission

JP Lebreton
ESA’s EJSM & TSSM Study Scientist
OPAG meeting
March 31 2008

EJSM: Europa/Jupiter System Mission

• Merging of Laplace proposal & 2007 NASA’s Europa Explorer and Jupiter System Observer Flagship study
• NASA/ESA/JAXA International collaboration
 • Europa Orbiter (assumed to be provided by NASA)
 • Jupiter Planetary Orbiter (assumed to be provided by ESA)
 • Jupiter Magnetospheric Orbiter (assumed to be provided by JAXA)
• Some interest (for providing a Europa lander) expressed by Roscosmos

TSSM: Titan/Saturn System Mission

• Merging of TandEM proposal & 2007 NASA’s Titan Explorer Flagship study
• NASA/ESA International collaboration
 • Titan Orbiter (assumed to be provided by NASA)
 • Titan in situ elements (assumed to be provided by ESA)
 • Montgolfiere
 • Probes/Landers (1-3)

On the Class-L Mission selection process

• Missions in competition within ESA science programme
 • OPM: EJSM or TSSM
 • XEUS (X-ray observatory)
 • LISA (ESA/NASA Gravitational Wave Observatory)
• EJSM/TSSM down-selection in Oct/Nov’ 2008. Process to be jointly defined by NASA, ESA, in collaboration with JAXA
• Down-selection to two L-Class Missions end of ’09: OPM/XEUS/ LISA ?
• L-Mission selection in 2011
 • One mission (out of the remaining 2) selected for implementation for launch in 2018
TSSM Configuration

- Option 1:
 - Titan Orbiter
 - Titan \textit{in situ} elements
 - Montgolfiere (MMRTG, NASA-Provided, to be confirmed)
 - Up to 3 descent probes/landers (ASRG NASA-Provided) or batteries (descent/initial surface phase) + RHU’s-based low-power electrical energy (long-lived surface phase)

EJSM mission: open points

- Baseline: independent launch for each of the 3 elements
- Combined JPO/JMO launch may be studied
- JAXA JMO planned no earlier than 2020
- JPO payload mass allocation: 50 kg?
- ESA Mission analysis starting

TSSM \textit{in situ} elements study approach (1)

- Bottom-up approach
 - Define a payload complement as initial starting point and design system that can carry it and provide all resources to address measurements
 - Proposed payload complements:
 - Probes/landers:
 » Mass: 5, 10, 15, 30 kg
 » Other resources (energy, power, data rates): TBD
 » Are all probes the same?
 - Montgolfiere
 » Mass: 5, 10, 20 kg
 » Other resources (energy, power, data rates): TBD
 - CDF study (mid-May to mid-July ‘08)

TSSM \textit{in situ} elements study approach (2)

- Top-down approach
 - Once delivery mass and telecommunication scenarios defined by JPL, system design will allow to perform system design and derive available payload resources
 - Preliminary delivery options provided by JPL
 - ESA Mission analysis starting
ESA Study approach & planning

- Baseline assessment study calendar was extended to end of 2009.
- Initial schedule adapted (compressed) to prepare for OPM down-selection process in fall 2008.
- Key engineering activity is CDF (Concurrent Design Facility) activity.
- EJSM & TSSM CDF study planned from mid-May to Mid-July.
- Industrial study will follow starting late ’08/early ’09.

ESA preparation for CDF activities

- EJSM and TSSM Science/Engineering WG formed.
 - To provide technical input for CDF activities.
- Documents to be prepared by end of April:
 - Science Requirement Documents (JSST)
 - Payload Definition Documents (JSST/Study Team)
 - Mission requirement Document (Study Team)
 - Mission Environment Documents (Jupiter radiation, Titan atmosphere, planetary protection, etc.)

ESA Cosmic Vision web page

- http://sci.esa.int/science-e/www/area/index.cfm?fareaid=100