

Idaho currently plays a key late-stage role in RPS for space missions

- INL is responsible for final assembly and testing of Radioisotopic Thermoelectric Generators (RTGs)
- The New Horizons mission to Pluto – the highestpriority exploration mission of the decade – depended on INL fabrication

Role of CSNR

- Support the space nuclear research and educational mission needs of the INL
- Reinvigorate research and education in space nuclear engineering within U.S. universities.
- Be a focus for engaging university scientists in research and development of advanced space nuclear systems, including space power and propulsion systems, and advanced radioisotope power systems at the INL.
- Summer Fellowship Program.

Radioisotope Power Systems (RPS)

- Current RTGs are simple, robust, and proven technology
- Pu-238 running out 24 kgs left
- CSNR is currently examining possible alternative isotopes and new materials to ensure immobilization in accident scenarios
- INL has facilities to fabricate new RPS systems
- Current design study:
 Using RPS sources for space
 power and for long duration
 (>2yr) Remotely Piloted Vehicles
 for planetary observation

Radioisotope Powered Flight

- Offers potential for months or years of continuous aircraft operation
- Utilization of radioisotope decay heat instead of combustion allows operation in oxygen-free environment
- Attractive for unmanned aircraft exploration missions in Martian atmosphere

Operation Basics

- Replace combustion chamber in jet engines with a radioisotope driven heat exchanger
- Operates for months to years based on isotope selection
- Somewhat throttled
- Utilizes ~95% of heat generated
- Stable, robust, long-lived

JAL

CSNR Sumer Fellows Study

- Mars airplane designed in the 2007 CSNR Summer Fellows program under Jon Webb's guidance
- Webb completing MS at ISU doing Titan airplane thesis
- Fellows examined
 - Isotope options
 - Engine type
 - Cooling options and heat transfer
 - Shielding estimates
 - Launch issues
 - availability

Mission Requirements

- Minimum flight time of 7-12 months
- Isotope shall provide 20-40 kWt
- Realistic isotope extraction/production costs
- Heat source assembly must survive re-entry and impact
- Minimal dose to workers during fabrication
- Total mass (including shielding) reasonable for our flight unit and for launch into space
- Isotope Properties Considered:
- Half Life
- Power Density (including compound form and isotopic concentration)
- Dose rate / Shielding requirement
- Production / Availability / Cost

Radioisotope Thermoelectric Generator (RTG) have been used since the Apollo days

- Pu-238
 - Non-weaponizable
 - 87.7 year half-life
 - Alpha decay plus gamma rays
- Heavily encapsulated
- Qualified against accident scenarios- fire, impact, explosion
- 6-8% conversion efficiency
- No moving parts
- Around 200 kg/kWe
- Continuous power

Suitable Isotopes Based on Power Density:					
Isotop e:	100% Isotope Power Density: (W/g)	Compoun d Form:	Meltin g Point: (°C)	Compound Power Density: (W/g)	Mass Compound for 20 kW _t : (kg)
Sr-90	0.90	SrO	2530	0.44	45.46
Ru-106	9.91	Metal	2334	0.69	28.99
Ce-144	21.07	CeO ₂	2400	0.65	30.77
Po-210	9.13	PoO ₂	500	7.55	2.65
Pu-238	0.55	PuO ₂	2400	0.39	51.29
Cm- 242	12.3	Cm ₂ O ₃	2265	10.05	1.99
Cm- 244	2.63	Cm ₂ O ₃	2265	2.15	9.31

Materials Issues

- Confine isotopes
 - Resist high temperature migration
 - Launch abort reentry
- Good thermal conductivity
- High Z for self shielding
- Non-reactive with many fluids
- One candidate is a tungsten-rhenium cermet
- Utilize particles of isotope distributed in W-Re matrix
- INL LDRD INL, BSU, ISU and UI collaboration awarded grant -\$250K/yr for 3 yrs
 - Acquired SPS furnace- delivered
 - Basis for joint NSF/EPSRC proposal with SRC in UK
 - Examine microstructure, gas and liquid diffusion, up to 70/30 vol fraction, Re fraction
- Potential for electrically heated turbojet using W-Re heat exchanger in FY2008 using INL funds

Engines Considered

- Turboprop
 - Used in low power, low speed Earth aircraft
 - Most (~90%) of thrust from propeller
 - Propeller efficiency decreases at high flight velocities
- Turbojet
 - Used in high speed Earth aircraft
 - Thrust generated from expansion of high pressure, high temperature exhaust gases in nozzle
- Ramjet
 - Used in supersonic Earth aircraft, missiles
 - No moving parts
 - Thrust generated from expansion of high pressure, high temperature exhaust gases in nozzle

Conclusion

- Radio-isotope heated engines seem to be viable for long duration flight in non oxygenated atmospheres
- Relatively easy construction
- Allows for detailed mapping and scientific exploration of an entire planet within a few years time frame
- Capable of loitering over specified targets
- Capable of being re-tasked to new targets that are not in the viewing angle of current trajectory with no propellant consumption

