NASA’s Cassini Spacecraft Reveals Forces Controlling Saturn Moon Jets

Dramatic plumes, both large and small, spray water ice out from many locations along the famed "tiger stripes" near the south pole of Saturn's moon Enceladus. The tiger stripes are fissures that spray icy particles, water vapor and organic compounds. More than 30 individual jets of different sizes can be seen in this image and more than 20 of them had not been identified before. At least one jet spouting prominently in previous images now appears less powerful.  Image credit: NASA/JPL/SSI

Dramatic plumes, both large and small, spray water ice out from many locations along the famed “tiger stripes” near the south pole of Saturn’s moon Enceladus.
Image credit: NASA/JPL/SSI

The intensity of the jets of water ice and organic particles that shoot out from Saturn’s moon Enceladus depends on the moon’s proximity to the ringed planet, according to data obtained by NASA’s Cassini spacecraft.

The finding adds to evidence that a liquid water reservoir or ocean lurks under the icy surface of the moon. This is the first clear observation the bright plume emanating from Enceladus’ south pole varies predictably. The findings are detailed in a scientific paper in this week’s edition of Nature.

“The jets of Enceladus apparently work like adjustable garden hose nozzles,” said Matt Hedman, the paper’s lead author and a Cassini team scientist based at Cornell University in Ithaca, N.Y. “The nozzles are almost closed when Enceladus is closer to Saturn and are most open when the moon is farthest away. We think this has to do with how Saturn squeezes and releases the moon with its gravity.”

This set of images from NASA's Cassini mission shows the difference in the amount of spray emanating from Saturn's moon Enceladus. The images from Cassini's visual and infrared mapping spectrometer show that Enceladus sprays the most when it is farthest away from Saturn in its orbit (left) and sprays the least when it is closest to Saturn (right).

The images from Cassini’s visual and infrared mapping spectrometer show that Enceladus sprays the most when it is farthest away from Saturn in its orbit (left) and sprays the least when it is closest to Saturn (right).
Image credit: NASA/JPL-Caltech/University of Arizona/Cornell

Cassini, which has been orbiting Saturn since 2004, discovered the jets that form the plume in 2005. The water ice and organic particles spray out from several narrow fissures nicknamed “tiger stripes.”

“The way the jets react so responsively to changing stresses on Enceladus suggests they have their origins in a large body of liquid water,” said Christophe Sotin, a co-author and Cassini team member at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Liquid water was key to the development of life on Earth, so these discoveries whet the appetite to know whether life exists everywhere water is present.”

This set of images from NASA's Cassini mission shows how the gravitational pull of Saturn affects the amount of spray coming from jets at the active moon Enceladus. Enceladus has the most spray when it is farthest away from Saturn in its orbit (inset image on the left) and the least spray when it is closest to Saturn (inset image on the right).

This set of images from NASA’s Cassini mission shows how the gravitational pull of Saturn affects the amount of spray coming from jets at the active moon Enceladus. Enceladus has the most spray when it is farthest away from Saturn in its orbit (inset image on the left) and the least spray when it is closest to Saturn (inset image on the right).

More information

Be Sociable, Share!