Communications Tests Go the Distance for MAVEN

It’s not easy to simulate millions of miles electronically, but that’s what engineers did recently as they tested the all-important communications system the MAVEN spacecraft will use to relay its study results from Mars orbit to Earth-bound researchers.

Working from their consoles at NASA’s Kennedy Space Center, a team of test engineers from the Jet Propulsion Laboratory in California, better known as JPL, conducted more than a week of evaluations on the antennas and circuitry aboard the spacecraft.

Engineers work on the MAVEN spacecraft, which is dominated by the high-gain antenna that is crucial to communications with NASA's Deep Space Network. Image Credit: NASA/Kim Shiflett.

Engineers work on the MAVEN spacecraft, which is dominated by the high-gain antenna that is crucial to communications with NASA’s Deep Space Network. Image Credit: NASA/Kim Shiflett.

They beamed signals to the low-gain and high-gain antennas on MAVEN and basically treated the machine as though it really were flying on a 10-month journey from Earth to Mars and then studying the upper atmosphere of the Red Planet.

Such work is critical, mission managers said, because there is no way to fix a spacecraft’s communications system once it leaves Earth.

“It doesn’t matter what we do out there if we can’t get the data back to Earth,” said Jeff Coyne, Lockheed Martin’s Assembly Test and Launch Operations manager for the project.

MAVEN is short for Mars Atmosphere and Volatile Evolution. It is scheduled to launch in November aboard a United Launch Alliance Atlas V.

“I say this is one of the most important things, because if we can’t talk to it . . . ,” said Sheryl Bergstrom, manager of JPL’s Cape Operations Office at Kennedy.

The testing was standard stuff for the engineers, but nonetheless mind-bending considering that the spacecraft will operate millions of miles from Earth and rely on commands from operators at Goddard Space Flight Center in Maryland.

To mimic the distances between the spacecraft and Earth, the electronic signals sent between the two during testing are run through a cabling system that quickly ramps down the power by going through various wiring networks.

“We’ll try to squeeze the signal down to its lowest possible point,” said Chris Green, an engineer with Exelis who supervised the testing. “It’s a machine and we test its actual flight performance — every scenario of flight configuration it would be in is what we go through in testing.”

“We allow the project to get online and do what they would do on a normal day so they can perform all the tasks through us just as if MAVEN was actually in space,” said Lorenzo Morgan, one of the engineers operating and evaluating the procedures.

This artist's concept depicts NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft orbiting Mars.  Image Credit: NASA/JPL-Caltech

This artist’s concept depicts NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft orbiting Mars.
Image Credit: NASA/JPL-Caltech

More information

Be Sociable, Share!