NASA Supported Research Helps Redefine Solar System’s Edge

The solar system has a new most-distant family member.

Scientists using ground based observatories have discovered an object that is believed to have the most distant orbit found beyond the known edge of our solar system. Named 2012 VP113, the observations of the object — possibly a dwarf planet — were obtained and analyzed with a grant from NASA. A dwarf planet is an object in orbit around the sun that is large enough to have its own gravity pull itself into a spherical, or nearly round, shape.

The detailed findings are published in the March 27 edition of Nature.

“This discovery adds the most distant address thus far to our solar system’s dynamic neighborhood map,” said Kelly Fast, discipline scientist for NASA’s Planetary Astronomy Program, Science Mission Directorate (SMD) at NASA Headquarters, Washington. “While the very existence of the inner Oort Cloud is only a working hypothesis, this finding could help answer how it may have formed.”

The observations and analysis were led and coordinated by Chadwick Trujillo of the Gemini Observatory in Hawaii and Scott Sheppard of the Carnegie Institution in Washington. They used the National Optical Astronomy Observatory’s 13-foot (4-meter) telescope in Chile to discover 2012 VP113. The telescope is operated by the Foundation of Universities for Research in Astronomy, under contract with the National Science Foundation. The Magellan 21-foot (6.5-meter) telescope at Carnegie’s Las Campanas Observatory in Chile was used to determine the orbit of 2012 VP113 and obtain detailed information about its surface properties.

“The discovery of 2012 VP113 shows us that the outer reaches of our solar system are not an empty wasteland as once was thought,” said Trujillo, lead author and astronomer. “Instead, this is just the tip of the iceberg telling us that there are many inner Oort Cloud bodies awaiting discovery. It also illustrates how little we know about the most distant parts of our solar system and how much there is left to explore.”

These images show the discovery of 2012 VP113 taken about 2 hours apart on Nov. 5, 2012. The motion of 2012 VP113 stands out compared to the steady state background of stars and galaxies. Image Credit: Scott Sheppard/Carnegie Institution for Science.

These images show the discovery of 2012 VP113 taken about 2 hours apart on Nov. 5, 2012. The motion of 2012 VP113 stands out compared to the steady state background of stars and galaxies. Image Credit: Scott Sheppard/Carnegie Institution for Science.

More information