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Abstract 
 In order to perform deep space life sciences and artificial gravity research, a 315 metric ton space station 
has been designed for the L1 libration point between the Earth and the Moon. The station provides research facilities 
for a total of eight crew in two habitats connected to their center of rotation by 68 m trusses.  A third mass is offset 
for stability. Solar arrays and docking facilities are contained on the axis perpendicular to rotation. A total of 320 m2 
of floor space at gravity levels from microgravity to 1.2g’s are available for research and experimentation. Specific 
research capabilities include radiation measurement and testing, human physiological adaptation measurement, and 
deep space manned mission simulation. 
 
Introduction 

Space is a harsh and unforgiving environment. In addition to basic life support requirements, radiation 
exposure, cardiovascular deconditioning, muscle atrophy, and skeletal demineralization represent major hazards 
associated with human travel and habitation in deep space.  All of these hazards require special attention and 
prevention for a successful mission to Mars or a long duration return to the Moon. Greater knowledge of human 
physical response to the deep space environment and reduced gravity is required to develop safe prevention 
methods. 

An artificial gravity space station would provide a facility for exploring these issues. The primary purpose 
of the station will be to explore the ability for humans to live and work in artificial gravity in deep space across a 
wide range of gravity levels up to 1.2g. In preparation for a future mission to Mars, the station will also simulate a 
full-length Mars mission. The simulation will acquire valuable data about the body’s adaptation to Mars gravity, and 
will allow astronauts to test technologies at Mars gravity. Artificial gravity also provides opportunities for life 
sciences and advanced technology research with application to Earth based needs. 

Positioning this station at the Earth-Moon L1 point provides an ideal location for study of the deep space 
environment.  A human presence at the L1 point, over 300,000 km from Earth, will require the closed loop life 
support systems and increased radiation protection common to any deep space mission.  An artificial gravity station 
at the L1 point could also serve as a transportation node for Mars missions, providing storage, supply, and crew 
recuperation in artificial gravity. 

 In 1961, Arthur C. Clarke predicted the establishment of a space station at L1 in his book "A Fall of 
Moondust.” Clarke’s “2001: A Space Odyssey” portrayed yet another incredible station with artificial gravity. In 
tribute to Arthur Clarke’s vision and inspiration, the University of Maryland L1 habitat is named Clarke Station.  
 
Challenges 

Artificial Gravity 
In 1966, astronauts Conrad and Gordon achieved a low level of artificial gravity when they tethered 

together the Gemini capsule to the Agena target vehicle and rotated slowly for 2 ½ orbits around the Earth. While 
artificial gravity production through rotation has been demonstrated on a small scale, knowledge of the ability for 
humans to live and work in a large scale rotating artificial gravity environment is limited. Research conducted in 
centrifuges on Earth has concluded that humans can adapt and live for extended periods to rotation rates as high as 
8.5 RPM. To ensure that astronauts can live and work comfortably, Clarke Station will have a maximum rotation 
rate of 4.0 RPM. Changes in gravity level are accomplished through control of the rotation rate. Since the station 
generates a maximum gravity level of 1.2g, or 12m/s2, and has a maximum rotation rate of 4 RPM, the radius of the 



station is 68.4 m. The station must also be capable of accepting a docking vehicle while it is spun up in order to dock 
to the station without disturbing the science missions and to reduce propellant expenses. 

Floor Space 
Clarke Station will support 8 crewmembers during normal operations and has the capability of supporting 

16 crewmembers for short durations during crew transfers. The crew must have enough space to live and work 
effectively for long durations. Because Clark Station has gravity, floor space area requirements, not volume, must be 
considered. For long duration space flight, the minimum floor space per crewmember is 40 m2. The open floor space 
requirement is 8 m2 per crewmember. This requirement results in a station with a total floor space of 320 m2.  

Radiation Exposure 
Space radiation consists mainly of high energy-charge particles such 

as protons and heavy ions. At the L1 point, shown in Figure 1, beyond the 
protection of the Van Allen Belts, radiation from Galactic Cosmic Radiation 
and Solar Particle Events threaten the health of Clarke Station inhabitants. 
Galactic Cosmic Radiation (GCR), originates from outside the solar system, 
and consists mainly of hydrogen. GCR is indirectly related to the 11-year 
cycle of the Sun, where its maximum is at the solar minimum. During a solar 
minimum, an unshielded dosage is about 60 rem/year, and a factor of 2.5 
lower at solar maximum. Solar flares are explosions on the Sun that generate 
Solar Particle Events (SPEs), and shoot them into outer space. SPE’s occur 
once or twice a solar cycle. One of the largest solar flares occurred in 
1972, producing a dose of 350 rem for several hours.  

According to NASA requirements, maximum radiation dosage 
for Blood Forming Organs is 50 rem/year. Since solar flares can occur 
throughout the solar cycle, the worst-case scenario is a large solar flare 
occurring during solar minimum, when GCR is largest.  This scenario 
requires shielding against GCR along with sufficient shielding for a solar 
flare. 

 
Mission 

Bone and Muscle Research 
In microgravity, a significant number of bone forming cells die, and healthy bone cells produce fewer 

minerals. Muscle size decreases dramatically and there is a reduced capacity for muscles to burn fat for energy. 
Clarke Station science will determine the rate, location, and magnitude of bone and muscle loss as affected by 
gravity level. Changes in muscular performance as related to gravity level will be documented. Equilibrium 
bone/muscle levels, and the extent of bone loss reversal due to increases in gravity level will be determined. 
Exploring the relation between bone loss and decreasing muscle strength at other than Earth's gravity will aid in 
developing protocols for long duration space missions. Physical measurements and performance measurements, 
Dual Energy X-ray Absiorptiometry (DEXA) and ultrasound scanning will provide accurate measurements of bone 
structure and density. 

Human Physiology Research 

In addition to causing changes in bone and muscle strength, microgravity is known to cause drastic changes 
in the lungs and heart.  Central venous blood pressure decreases, baroreflexes are impaired, and heart rate increases. 
There is a shift in body fluid toward the head, blood volume decreases, and red blood cell count decreases. 
Experiments in the cardiovascular field will help understand cardiac and circulatory hemodynamics, biochemical 
changes, baroreflexes, and dysrhythmias at different gravity levels. Reduced gravity environment adaptation and 
circadian rhythms will be analyzed and related to performance. Immunology research will focus on the ability for 
astronauts to respond to and recall antigens at different gravity levels. Neurotransmitter and overall neurosensory 
changes in response to a change in gravity remains incomplete. Experiments designed in the field of neuroscience 
will aim to understand space motion sickness, how sensory motor skills are affected, and rotating environment 
effects on the neurovestibular system.  

Earth 

Moon 

L1 

Figure 1. Libration points for the Earth-
Moon system shown with contours 
representing gravitational and centripetal 
forces. 
Adapted From: [Dr. Soho. 2001. “SOHO FAQ: 
Astronomy.”sohowww.nascom.nasa.gov/explore/faq/a
stronomy.html] 



Radiation Science 

Radiation science experiments will provide accurate radiation monitoring and measurements to assess and 
reduce health risks of the crew as well as chart the radiation environment of deep space. Dosimetric Mapping will 
provide a quantitative description of the radiation field inside and outside Clarke Station. Active dosimeters will 
measure localization of charged particles and the energy spectrum of radiation, and the crew will wear passive 
dosimeters to measure absorbed dose. Outside the station, the Phantom Torso, a torso and head constructed from a 
muscle-tissue plastic equivalent with over 350 passive dosimeters embedded in it, will be used to measure organ 
level radiation doses. The Bonner Ball Neutron Detector (BBND) uses six detector spheres filled with He3 to 
determine neutron radiation effects. Results from these experiments will provide more accurate and reliable 
radiation prediction models for future missions. 

Mars Simulation Science 

Mars simulation missions will allow for valuable experimentation and learning in preparation for a future 
mission to Mars. Physiological changes resulting from long-term exposure to Mars gravity will be documented. 
Communication time delays that would occur on a Mars mission, of 21 minutes maximum length, will be simulated. 
Astronauts will utilize the Range, an open area of approximately 10 m2, for Mars suit mobility testing, structure 
building, and interaction with autonomous robots. To prove the ability to grow plants for consumption at Mars 
gravity, as necessitated in the Mars Reference Mission, three plant growth modules totaling 3 m2 of growth area will 
be on Clarke Station. These plants will also be analyzed on the cellular level in the biology lab. Completion of the 
full-length Mars simulation in 2012 will allow time to integrate the lessons learned from the simulation into a Mars 
mission design for the opportune window of 2016-2018 when travel durations will be as short as 130 days. 

Advanced Technology – Future Research 
After the full-length Mars simulation, Clarke Station will transition to a life sciences and advanced 

technologies station. Biotechnology, Microbiology, Materials Engineering, Reproduction and Development, Lunar 
research, Electrical Engineering, and Exobiology research will further help scientistics understand the human 
response to the space environment, the composition of the solar system, and lead to important medical and 
technological discoveries that have benefits on Earth. 

Gravity Level Timeline 

Table 1 shows the station gravity levels for the first six 
years beginning with initial station operation in January 2007. Crew 
rotations occur once a year for the first three years. Gravity level 
step increases are conducted the first year to study adaptation and 
living abilities of astronauts at various gravity levels. The second 
year is a short-term Mars mission simulation. This short-term 
simulation assumes the astronauts will have a ½g artificial gravity 
transfer vehicle. The third year is devoted to another short-term 
Mars mission simulation. Mars transfer in this simulation is in 
microgravity. A comparative study of the second and third years 
will give scientists valuable insight into the transportation needs for 
a Mars mission. Following the short-term Mars mission simulations 
is a full-length Mars mission simulation. The gravity level for the 
first 5 and last 4 months of the full-length Mars simulation will be 
decided based on information gathered over the initial three years 
and Mars mission plans in 2010. The durations for the full-length 
Mars simulation match the durations of the long stay fast transit 
mission outlined in the Mars Reference Mission. Completion of the 
full-length Mars simulation in 2012 will allow time to integrate the 
lessons learned from the simulation into a Mars mission design for 
the opportune window of 2016-2018 when travel durations will be 
as short as 130 days. The station gravity levels following the full-
length Mars will be selected based on experience gained from the 
critical six-year period and to accommodate research needs. 

Table 1. Gravity Level Timeline 

Year 
Gravity  

Level 
Duration 
(months) 

Lunar (.17g) 2 
Mars (.38g) 2 
½ Earth  2 
¾ Earth 2 
Earth 2 

Year 1 
(2007) 

Maximum 2 
 Crew Change 

½ Earth 3 
Mars (.38g) 6 

Year 2 
(2008) 

½ Earth 3 
 Crew Change 

Microgravity 3 
Mars (.38g) 6 

Year 3 
(2009) 

Microgravity 3 
 Crew Change 

TBD 5 
Mars (.38g) 21 

January 2010 
–  

July 2012 TBD 4 
 Crew Change 

July 2012 TBD TBD 



Figure 2. Station Overall Configuration 
 

Systems Design 

General Configuration 

The crew and equipment for conducting these 
experiments is distributed into two manned habitats at 
equal distances from their center of rotation. To allow 
docking while spinning, a non-spinning truss was 
placed on the axis through the center of rotation, 
perpendicular to the plane of rotation (Fig. 2). The 
station fixed coordinate system used to describe the 
location of station components uses the spin axis as the 
z axis. The z truss serves two purposes: to eliminate the 
relative rotational motion of the rotating section from 
the docking procedure and to serve as a sun-tracking 
axis to accommodate solar array pointing with minimal support structure mass. Thus, the z truss will rotate at a rate 
of approximately 1°/day with respect to an inertial frame. Stiff trusses were chosen in order to adequately transmit 
torques required during station keeping and docking. 

In order to maintain a stable spin situation, the rotating section of the station must have its center of gravity 
at the center of rotation and the station must be spinning about its minor or major principal axis. Modeling the 
station as a gyrostat, a dual-spin system with an axis-symmetric z truss, showed that having two collinear masses 
(habitats, labs, or other mass) spinning about the z truss is unstable because the spin axis would then be the 
intermediate principal axis. Therefore, three spinning masses were required to maintain spin stability. 

Using expended transfer vehicle boosters for the third mass minimizes the expense of delivering additional 
mass to L1 while providing for station stability. Based on the assembly and delivery schedule, 5 expended boosters 
with 3 tons of inert mass each will arrive at Clarke Station.  Because this mass totals only 15 tons compared to the 
42-ton habitats, the habitat trusses must be at an angle of 160° from one another, and the boosters at an equal 
distance of 68.4 m from the center of rotation. By making use of this excess mass, only about 1½ tons of extra truss 
will be needed to connect the boosters to the rotational center.  

 
The Z-truss 

The z truss is actually two separate free-spinning trusses, the +z truss and the –z truss, which are attached to 
each side of the rotating section perpendicular to the plane of rotation. The –z truss rotates with the habitats the 
entire way to the docking system and is sun-tracking from the docking collar to the –z end of the station. The 
attachment points will have rotational interfaces as described below. Although only the +z truss contains the solar 
arrays, both sections will track the sun to maintain alignment of the reaction control thrusters, which are housed at 
the ends of the z trusses. 

The angular momentum of the rotating section will be on the order of 108 kg-m2/s. The reaction control 
thrusters are placed 30 m from the rotating plane on the + and - z trusses in order to produce a sufficient torque to 
adjust this angular momentum. The transfer vehicle docking system was placed 25 m away from the rotational 
section to reduce plume impingement on the structures from the transfer vehicle thrusters. 

Depending on whether one, two, or no transfer vehicles are docked to the station, the center of mass and 
moment of inertia will change. The moment of inertia for the station was calculated using the coordinate system 
shown in Table 2, which depicts the center of mass and moment of inertia as a function of the number of docked 
transfer vehicles. 
 
Table 2. Station Center of Mass and Moment of Inertia 

Center of Mass (m) as a function of 
Transfer Vehicles Docked 

Moment if Inertia 

No x-fer vehicle docked: (0, 0, -4.6) Ix = 3.9 X 108 

1 x-fer vehicle docked: (0, <<1, -9.2) Iy = 0.84 X 108 

2 x-fer vehicles docked: (0, 0, -13.8) Iz = 4.6 X 108 

 
Z 

X 

Y



Habitat Modules 
An inflatable structure was chosen for the habitats because of its low weight, small packaging volume, 

strength in terms of pressure, ability to withstand impact of micrometeoroid debris and better radiation shielding as 
compared to conventional modules. The inflatable habitat is mounted longitudinally to the truss and has the inflated 
dimensions of 5.4 m radius, 7.6 m length, and 0.3 m wall thickness. The habitat interior consists of two floors with 
2.5 m ceilings and 1m storage space located above the upper ceiling and below the lower floor. The floors are 
connected by a 3.5 m diameter core. The habitats were designed to accommodate crewmembers from the 5th 
percentile Japanese female to the 95th percentile American male. 

The habitat’s internal pressure creates both longitudinal and transverse pressurization loads on the habitat 
wall. In addition to the longitudinal pressure loads, the habitat also sees longitudinal loads due to centripetal 
acceleration. The habitat shell consists of multiple layers of woven Kevlar that are responsible for the module shape, 
loads, and protection from micrometeoroid debris. The micrometeoroid protection is made up of alternating layers of 
woven Kevlar and polyethylene foam. Inside those layers are bladders 
made up of viton to hold water for radiation shielding. The innermost 
layer is Nomex cloth protecting the viton bladders from scuffs and 
scratches. This design has a safety factor of 3 and a margin of safety of 
1% for transverse stress and 2.7% for longitudinal stress. The total mass 
of the module is 42,000 kg, which consists of 15,000 kg empty mass, 
23,000 kg radiation shielding mass, and 4,000 kg of equipment.    

 
Truss Structure 

The truss is the main structural backbone of Clarke Station. It is separated into three Rotating Truss (RT) 
spokes and two Z-Truss (ZT) elements (positive and negative). The truss provides a pass-through for the transfer 
tunnel and hard mounts for attached payloads. The RT passes around the hub module by means of a spoke 
interconnect structure, thereby decoupling the hub from reacting station bending and axial loads. 

Both the RT and the ZT are 6m box trusses having four tubular main spars of outer diameter 250 mm and 
cross-members of 130 mm diameter. The main spars are two concentric tubes of a 1.5mm thick composite laminate. 
The laminate is Toray M55J/Fiberite 934-3 carbon/cyanate ester in a [90/±30/±15/0]s symmetric fiber orientation. 

The tightly woven plies offer superior micrometeoroid impact resistance and superior corrosion resistance. 
Furthermore, the laminate possesses ultra-high dimensional stability under thermal cycling.  

The truss is weakest in its resistance to buckling. Bending in the RT due to angular rate adjustment 
thrusting loads truss members in compression and causes lowest M.S. on buckling. The truss design was driven both 
by resistance to buckling and resistance to natural frequency excitation in bending of the RT spokes. Longitudinal 
and Bending Natural Frequencies were calculated for both the RT and ZT spokes and are tabulated in Table 3. For 
the operational load environment, margins of safety are presented in Table 4 below.  

 
Table 3. RT and ZT Bending Natural Frequencies 

Natural Frequencies RT Spoke, Habitat 
at End 

RT Spoke, Offset 
Mass at End +Z-Truss -Z-Truss, 2 Transfer 

Vehicles Docked 
Longitudinal, Hz 4.5 7.5 46.8 5.9 
Bending, Hz 0.37 0.63 10.5 1.3 

 
 
 
 
 
 

 
 

 

Figure 3. Habitat Structure 

Viton Nomex Kevlar MLI

Polyethylene

Figure 4. Habitat Layers 



 
Table 4. Truss Margins of Safety 

 

Transfer Tunnel 
The transfer tunnel provides crew passage between the habitats and docking areas. It consists of four major 

parts: an inflatable tunnel, consisting of eight layers of material that are similar to the layers of the habitat module 
but without water filled bladders for radiation shielding; aluminum stiffening rings; Kevlar stringers attaching the 
tunnels to the trusses; and aluminum lockout doors located at every 10 m of the tunnel to maintain pressurization of 
the tunnel in the event of a breach in one section of the tunnel wall (Fig. 5).  

Transfer through the tunnel will be by use of ladders or a winch mechanism.  Two 10 m ladders will be 
placed along either side of the tunnel wall in each 10m section of the tunnel.  The winch is a 12 VDC planetary gear 
winch for carrying loads and crewmembers up and down the tunnel.  

The major loads on the transfer tunnel, given in Table 5, are the force of the lockout doors on the walls 
from centripetal acceleration, the pressure loading on the tunnel walls, the stress on a closed lockout door due to 
pressurization, the stress in the Kevlar stringers due to torsion in the truss, and the maximum stress on the aluminum 
stiffening rings.  
 
Table 5. Transfer Tunnel Margins of Safety                                    

Load Considered 
Applied Stress 

(MPa) 

M.S. 

Force of Lockout doors on walls 
from centripetal acceleration 

54.0 21.23 

Transfer Tube Pressure Load, 
Hoop stress walls @ 101 kPa 

108 10.13 

Stress on Lockout door from 
pressurization @ 101 kPa 

31.9 6.91 

Maximum Forces on Kevlar 
Stringers 

63.4 0.39 

Maximum Forces on Stiffening 
Rings 

121 1.09 

 
Rotational Interface 

Rotational interfaces are located on the positive and negative despun trusses to allow these sections to 
rotate independently of the rotating section. The –z interface has three modes of transmission: electrical, consisting 
of both power and data; biological, or life support and human passage; and structural resistance to moments created 
by spinning up and down the rotational section, thrusting for attitude and station keeping, and docking the transfer 
vehicle. The +z interface will need to handle only power, data, and structural loading. The –z interface is also the 

Description of Limiting Load Case Applied Stress Failure Mode Margin

Axial Loads
Axial Stress in Rotating Truss Habitat Spoke at .42 rad/s (MPa) 63 Tension 10.6

Axial Stress in Rotating Truss Offset Mass Spoke at .42 rad/s (MPa) 19 Tension 38.4

Bending Loads
Bending in Rotating Truss Spoke due to 1 Hour Spin-up from 0 to .42 rad/s (MPa) 1.8 Euler Buckling 0.2

Bending in -Z-Truss due to Worst-Case Docking Impact (MPa) 2.2 Euler Buckling 0.0

Bending in -Z-Truss due to Attitude Control Thrusting (kPa) 4.6 Euler Buckling 483

Bending in +Z-Truss due to Attitude Control Thrusting (kPa) 4.9 Euler Buckling 451

Shear Loads
Shear in Rotating Truss due to 1 Hour Spin-up from 0 to .42 rad/s (kPa) 87 Shear 994

Shear in Rotating Truss and Z-Truss due to Worst-Case Normal Plume Impingement (kPa) 13 Shear 6630

Shear in -Z-Truss and +Z-Truss due to Attitude Control Thrusting (kPa) 0.49 Shear 176000

Shear in -Z-Truss due to Worst-Case Docking Impact (kPa) 240 Shear 358

Shear in -Z-Truss and +Z-Truss due to Worst-Case Mass Eccentricity at .42 rad/s (kPa) 420 Shear 204

Shear in +Z-Truss due to Solar Pressure (Pa) 0.12 Shear 690000

Figure 5.  Transfer Tunnel 



junction between the –z tunnel and Airlock-Docking System (ADS), which will be separated by an airlock that can 
be opened during transfer times. Therefore, the ADS will have a separate atmosphere control that will also be used 
for EVA pre-breathe.  

Main loading on the rotational interfaces stems from either impact with the transfer vehicle or from thruster 
firing. Forces from docking are about 2250 N on a 1 m moment arm on the –z truss, and the thrusters fire at about 
500 N on a 30 m moment arm on the +z truss. Thus, the greatest loading on the rotational interfaces comes from the 
thrusters on the +z section. Using this information, the thickness of each bearing collar and its flanges must be at 
least 0.045 m of aluminum. Stainless steel shims are used inside on contact surfaces to minimize the coefficient of 
friction. 

Each rotational joint will also have a bearing assembly to overcome friction losses on the rotating interface 
and a vacuum seal to separate the internal atmosphere and the outside vacuum of space. To maintain constant 
relative angular velocity, the interfaces will also contain two redundant constant-spin motors. 
 
Hub 

The station hub serves as a storage center as well as a pass-through from the 
two spokes and the –z truss (Fig. 6).  The hub shell is designed to handle only 
pressurization loads. To handle a maximum internal pressure of 101 kPa, the total 
thickness of inflatable material is 0.024 m. Since the hub and the transfer tunnel share 
similar functions and loading environments, their inflatable weaves are identical. 
Accounting for attachment points, the hub final dimensions are 7.0 m in diameter and 
5.5 m high with an interior volume of 210 m3. 
 
Airlocks 

The station is designed to handle 2 person EVA’s on a daily basis. Most EVA’s would be for upkeep and 
repair of the station.  In order to facilitate ease of mobility and safety about the trusses, an airlock is placed next to 
each habitat and one by the docking collar. The airlocks on the rotating section needed to accommodate two 
astronauts and their EMU’s, so the dimensions of the chambers are 4 m diameter and 2.5 m high. An access tunnel 
allows the astronauts to pass through the truss to exit the station. The dimensions for 
this tunnel are 2.0 m in diameter and 1.5 m long.  Because the loads on this structure 
are due mainly to pressure, an airlock skin thickness of 0.002 m results from the 

equation for hoop stress.  A 0.001 m offset micro-meteriod 
shield is placed on the airlocks to increase crew safety.  
Kevlar stringers to the truss support any bending stress due 
to centripetal acceleration (Fig. 7). Both of these airlocks 
will have pressure doors to the habitat and to the transfer 
tunnel. These doors will be nominally open. 

The –z airlock (ADS) is designed in the same 
fashion as the airlocks on the rotating section. However, as a component of this 
assembly, two docking collars are required at this point, one for the escape vehicle 
docked at all times, and one for the transfer vehicle (Fig. 8). Loading on this structure 
came mainly from impulse impact loading during docking. However, due to the truss 
requirement that impact velocity be at a maximum of 0.033 m/sec, the stresses applied on 
this assembly are very low.  

 

Subsystems 

Guidance and Control 

- Station-keeping - 

Clarke Station is required to orbit about the collinear libration point, L1, between the Earth and the Moon 
in the Earth-Moon system. The distance between the Earth and L1 is approximately 326,400 km and the distance 
between the Moon and L1 is about 58,000 km.  

Lissajous orbits are the natural motion of a satellite around a collinear libration point (Fig. 9). Hoffman 
described a large lissajous orbit with diameters of 18,000 km in the x-direction, 50,000 km in the y-direction, and 
50,000 km in the z-direction, using a coordinate system where the line from the earth to the moon is the primary 
direction and the earth-moon orbit plane is the primary plane.  In this orbit, the Earth and the Moon can block the 

Figure 7. Airlock 

Figure 6. Hub 

Figure 8. Docking 



Sun from the station, causing an eclipse. Eclipses of the Sun by the Earth will occur a maximum of 4 times per year 
and each will last a maximum of 160 minutes. Eclipses of the Sun by the Moon will occur a maximum of 3 times 
per year and each will last a maximum of 50 
minutes. The minimum amount of time in 
between eclipses is 14 days. 

This lissajous orbit was found to 
require station-keeping of 36 m/sec/yr and 
was chosen because of decreased station-
keeping compared to a halo orbit. In general, 
all of the disturbances that require station 
keeping are quite small, but add up over time, 
making thruster maneuvers necessary. The 
largest disturbance is due to the Sun’s gravity 
and it applies a constant force of 0.0058 N. 
Other disturbances from the Earth, the Moon, 
and solar radiation pressure are even smaller 
than the force from the Sun’s gravity. Station-
keeping will require a total of 50 m/sec/yr change in velocity including a 30% margin in maneuvers. Corrections 
should be performed about nine times per year, at about 4 m/s of ∆V per correction to provide the baseline 
36m/sec/year. For 15 minute burns, the total force required is 1400N. Two thrusters at each end of the z-truss fire 
during station keeping, requiring each thruster to produce approximately 350 N of force.    

When the total mass of the system is considered (mass of propellant, tanks, and structure), storable 
bipropellents are the best option, with a total mass of 3600 kg. Clarke Station will use MMH/N2O4 thrusters for 
station keeping and the propellant tanks for this system will be located on both the negative and positive z-axis, one 
fuel and one oxidizer tank on each.  

In order to provide the station with its position, daily ephemeris will be generated on Earth by the Flight 
Dynamics team and uplinked to the station. This is the most efficient way of updating position onboard. The 
ephemeris is an instantaneous snapshot of the orbit at a given time, and will contain three – axis position and 
velocity, calculated on the ground using current orbital models. 

- Attitude determination and control - 

The most prominent external torques are from gravity, solar pressure radiation, aerodynamic forces, and 
magnetic field forces. In our case the gravity force (1.1 x 10-7 N-m), magnetic field force (2.3 x 10-17 N-m) and 
aerodynamic force are negligible. At L1, the solar pressure results in a constant torque of approximately .028 N-m, 
which effectively pushes the station around the y-axis since the difference distance between the center of gravity of 
the entire station and the center of solar pressure is offset from the geometric center of the station. 

With the station’s angular momentum in the positive z direction, the solar pressure torque rotates the station 
approximately 11 degrees per month if the spinning section is rotating to produce artificial gravity of 1 x 10-4 m/s2 
and 0.03 degrees per month of the spinning section is rotating at 4RPM to produce maximum gravity of 1.2g. 

The attitude sensors chosen for the station include one CT – 632 Star Tracker, one Precision Sun Tracking 
Sensor, and six coarse sun sensors. The star tracker will be the primary attitude sensor, placed on one of the pods on 
the rotating section facing away from the sun towards deep space. This particular tracker can track up to five stars at 
one time in its large field of view (FOV), 18° x 18°. It contains an onboard star catalog, which allows the sensor to 
provide a quaternion instead of raw sensor measurements. This prevents the need for extra flight software coding to 
process raw data. 

The Precision Sun Tracking Sensor, also manufactured by Ball Aerospace, provides accurate information 
regarding any deviation from the sunline. This sensor will be located along the +Z truss, an inertial portion of the 
station, in order for the FOV to always face the Sun. The sun sensor has a 110° FOV, and outputs fully processed, 
ready-to-use 16-bit sun position angles to the onboard software. 

The station’s attitude control subsystem will also use ADCOLE Coarse Sun Sensors, one on each side of 
the rotating pods, for a total of six. As the station rotates, two of the coarse sun sensors will always detect the Sun in 
their FOV. This output will determine the rate of the rotating section by calculating the time it takes for one sensor 
to view the sun twice. 

To obtain a more accurate rate of motion of the station for any station keeping or changing activities, Space 
Inertial Reference Unit (SIRU) Dual String Gyros, manufactured by Litton, were selected. The SIRU contains two 
sets of three-axis Inertial Reference Units with radiation hard internal components. The gyros will sense the rate of 

Figure 9. Lissajous orbit of Clarke Station.  
From: [Hoffman, David. Station-keeping at the Collinear Equilibrium 
Points of the Earth-Moon System. 1993. NASA JSC-26189.] 



the spacecraft in all three axes, providing a measurement of the station’s velocity (rate of change) and acceleration 
(rate of change over time). The box will be located along the +Z axis truss 

All of the sensors will be designed to output data at 10 Hz over a single MIL-STD-1553 bus or multiple 
buses as needed (TBD). The software will take in data from all of the sensors, but will have the flexibility to choose 
how often it samples the 10 Hz output.  

Hot gas thrusters have been chosen as the method for counteracting these disturbances. Attitude will be 
maintained to within 1°, with thrusters firing 30 seconds in duration. For a 3 year mission with varying degrees of 
gravity, the station will need to reorient approximately 650 
times with a 4.7N thrust, producing a total propellant mass of 
300kg. This includes a 100% margin to take into account 
internal disturbances and emergency circumstances. There will 
be a total of 56 thrusters, 8 on each spoke of the rotating 
section for control about the z-axis, and 16 on each end of the 
z-truss sections, two at the center of each straight section and 
2 at each corner 90 degrees apart from each other for control 
about the x, y, and z axes (Fig. 10). The thrusters on the 
rotating sections, which also have habitat modules, are offset 
at least 2 m from the truss in order to avoid plume 
impingement on the habitats themselves.  

- Spin-up/Spin-down - 

In order to achieve full spin up or spin down of the station in one hour, 855 N must be applied at the 62.1 m 
point on each rotating spoke. Two thrusters fire on each spoke so each thruster must produce 428 N of force. Using 
MMH/ N2O4, the thrusters, propellants and tanks for a full spin-up or spin-down will have a mass of 2900 kg. The 
propellant storage tanks for this system will reside on the rotating spokes, one fuel and one oxidizer tank on each. 

 
Computer System  

A computer system in Clarke Station is necessary for monitoring and housekeeping. Connections used 
throughout the station will include ethernet, 1553 buses, RS-422, and RS-232 cables. The centralized computer 
system will store all information collected throughout the station. Laptops for each crew member will be available to 
connect to the main computer system anywhere on the station. The duties of the centralized computer system 
include data processing and housekeeping, sensing and processing of station structure and astronauts, attitude and 
orbit control functions, thermal control, power management, and communications. Station-ground communications 
include interface and telemetry, station monitoring, and station fault detection/recovery.  
 
Communications 

Clarke Station will have 4 channels of high definition television (HDTV) for both uplink and downlink. 
The 1.485 Gbits/s uncompressed HDTV can be compressed to 8 Mbits/s. Typical data rates will be on the order of 2 
Kbits/s for command and 80 Kbits/s for status and telemetry. Modulation will be Differential Phase Shift Keying 
because it utilizes the frequency spectrum and because it is not susceptible to phase disturbances. The frequency 
band used will be the Ku band to allow for enough bandwidth for the data rate. Two parabolic center-feed 
transmitter antennas of 0.8m diameter, located at either end of the z truss, will communicate with the Deep Space 
Network with continuous link availability. Table 6 gives the link budget for uplink and downlink. 

 
Table 6. Link Budget for Station Communications 

Communication Frequency Power Flux Density 
Effective Isotropic 

Radiated Power 
Link Margin 

Uplink 14.50 GHz 2E-10 W/m2 3E+8 W 18 dB 
Downlink 12.75 GHz 9E-14 W/m2 1E+5 W 20 dB 

 
Power and Thermal 

- Power generation - 

The systems on Clarke Station will require, with a 30% margin, about 62 kW of constant electrical power. 
This power will be provided by sun tracking solar arrays mounted on the inertial axis of the station. The solar arrays, 
which use gallium arsenide (GaAs) solar cell technology at an efficiency of 25%, are sized at 220 m2 area and 1600 

Figure 10: Left: Thrusters on spinning section. 
Right: Thruster placement on positive and 
negative z-truss sections. 



kg mass. Corrections to within 15-degree sun-normal conditions will be made for the arrays by a rack and pinion 
system incorporated into the mounting structure of the arrays. These measures provide for an average of 70 kW of 
power to the power conditioning and storage system. 

- Fuel Cells - 

Fuel Cells will be used to store power for use during the periods of darkness. Although regenerative fuel 
cells require reactants they are still much more efficient in mass than batteries or most other storable power sources. 
The fuel cell chosen for Clarke station is the hydrogen-oxygen fuel cell (referred to as “alkaline” because of the 
KOH electrolyte). The alkaline fuel cell has a specific power of approximately 275 kW/kg. It also has a low 
hydrogen and oxygen reactant mass, and a useful byproduct of water. All of the water will be held in the power 
circuit to use electrolysis to create more reactants for the fuel cell. The alkaline fuel cells have a 15 minute start-up 
time and a lifetime of approximately 2400 hours before refurbishment. A gas storage system was chosen over a 
cryogenic system for the fuel cells because of the small night cycle and low operating time. The total mass for the 
fuel cells and storage system is approximately five tons. 

- Thermal System - 

All of the computer systems as well as the astronauts produce heat. All 70 kW of input power becomes 
heat, and 70 watts per astronaut of heat must be dissipated to maintain an ideal living environment of 18-24 degrees 
Celsius. Another source of heat is the sun. Although the sun emits a large amount of energy, because of the large 
amount of radiation shielding and structural thickness there is a very small amount of heat transfer through the skin 
of the station. The radio antennas mounted on the exterior of the station, along with any storage tanks, will be coated 
with a white epoxy (high emittance, low absorbptance) to keep these devices within their operating temperature 
range. 

All electronics will be mounted to cold plates with heat pipes connected to them. The electronics thermal 
control loop will operate at 10-20 degrees Celsius. A second thermal control loop operating between 0-6 degrees 
Celsius will cool the air inside the habitat modules. All excess internal heat will be removed through heat exchanges 
to exterior radiator panels. 

The power required by the thermal control system is approximately 1 kW, mostly to pump the fluid through 
the various cooling components. The working fluid for the heat pipes is water, while the working fluid for the 
radiator is anhydrous ammonia. With water as the working fluid for the radiator panels, the necessary area to radiate 
the internal thermal energy of approximately 71 kW is 5 m2 for each habitat module. Small heaters will be dispersed 
throughout the habitat and transfer tubes to ensure the temperature does not fall below the required 18 degree 
Celsius minimum. There will also be thermisters distributed throughout the station to monitor and control the 
temperature. 
 
Life Support 

- Radiation Shielding - 

Hydrogen based materials are the most effective shielding materials, since these materials produce less 
heavy ions, which add to the radiation, when hit with high energy particles.  Liquid hydrogen is the most effective 
shielding material, however it must be kept at temperatures near absolute zero (20 K) to remain in liquid state.  
Lithium hydride is also an effective material, however it is extremely difficult to handle.  This material is extremely 
reactive to any water, even moisture in the air, and can spontaneously ignite due to rubbing or grinding.  Water, 
however, is much easier to use and can be easily contained. 

The crew quarters have heavier shielding so this smaller area can be used as a bunker to protect the 
astronauts against a solar flare, since these events produce a large amount of radiation in a short period of time.  In 
addition, the astronauts will spend a minimum of 8 hours a day inside their quarters, and therefore will also have a 
much thicker shield against GCR radiation for this time, further reducing the shield thickness needed for the skin.  
Also, if an astronaut is exposed to more than their limit of radiation in a given period of time, that astronaut could 
remain in the crew quarters for a “quarantine” period, in order to have a thicker shield for an extended period of 
time. 

The shielding needed to achieve the exposure limits was calculated from data received from the Johnson 
Space Center Spaceflight Radiation Health Program. The outer walls of the habitats contain 27 cm of polyethylene 
foam with a density of 36 kg/m3, which is equivalent to a 1 cm thickness of water in terms of density.  Polyethylene 
has roughly the same radiation protection qualities as water, and combined with a 4 cm thick water shield for the 
skin and a 16 cm thick shield for the crew quarters would reduce the radiation exposure in a worst-case scenario of a 



large solar flare at solar minimum to 50 rem/year. These thickness values give weights of 35100 kg for skin shield 
mass and 11500 kg for crew quarters shield mass.  The total shielding mass for Clarke Station will then be 46600 kg.   

- Air - 
A given astronaut will consume up to .85 kg of oxygen (O2) per day, and generates about 1 kg per day of 

waste carbon dioxide (CO2). O2 can be stored in a gaseous or liquid form, generated from decomposition of oxygen-
containing compounds, or reycled from water (H2O). CO2 can be removed with either disposable or regenerable 
filters, or can be converted into H2O and waste carbon. For converting CO2 into H2O, the systems considered were 
the Bosch, Sabatier, and Advanced Carbon-formation Reactor System (ACRS). For releasing O2 from H2O, Solid 
Polymer Water Electrolysis (SPWE) system was the best system. It was found that the combination of a Sabatier 
reactor and an SPWE had a lower overall mass than a system in which O2 was stored onboard and wasted. For CO2 
collection, two and four bed molecular sieves (2BMS/4BMS), Solid Amine Water Desorption (SAWD), and 
Electrochemical Depolarization Concentration (EDC) were considered; SAWD was found to be the best. For 
emergency O2 generation equipment, the optimal oxygen-releasing compound was found to be lithium perchlorate 
candles (LiClO4). O2 lost to leakage and inefficiencies in the Sabatier/SPWE processes will be scavenged from fuel 
tanks. For emergency CO2 removal, the optimal system is lithium hydroxide (LiOH). Both O2 generation and CO2 
removal can be accomplished using plants, but the necessary mass of this alternative is prohibitively high. 

Nitrogen (N2) is an important non-reactive component of the air. Nitrogen lost to leakage must be 
replenished from a tank. Stored liquid nitrogen was compared to stored hydrazine, which decomposes into nitrogen. 
As hydrazine is a storable liquid, it was found to be the more efficient way of storing nitrogen. 

- Water - 

  Humans in space generate about 1.2 kg per day of urine, 1.4 kg per day of water from sweat and breathing, 
and about 27 kg per day of waste water used for hygienic purposes (cleaning, bathing, etc.). For recovering urine, 
the systems considered were Vapor Compression Distillation (VCD), Vapor Phase Catalytic Ammonia Removal 
(VAPCAR), Thermoelectric Integrated Membrane Evaporation System (TIMES), and an Air Evaporation System 
(AES). For recovering water used for hygienic purposes, the systems considered were Reverse Osmosis (RO), 
Multifiltration Unibed (MF), and Electrodialysis. The only mechanical system considered for collecting humidity 
(from sweat and breathing) was that used on the MIR space station. In addition, for each of these three water losses, 
simply replenishing the lost water from a tank was also considered. The optimal solution was found to be to recycle 
all water using the VAPCAR, Electrodialysis, and MIR systems. However, a significant amount of water is lost 
mainly due to inefficiency in the Electrodialysis system, so about 2000 kg of stored water will have to be provided 
each year to replenish that loss. For removing human solid waste, the Supercritical Water Oxidation (SCWO) 
method was the only method available. 

- Mass and power - 

A 10% margin was included in all life support system masses, heat loads, volumes, and power 
requirements. The total mass of all systems in each habitable module is 1700 kg, which occupies 5.5 m3. The floor 
space required to house these systems is 3.1 m2. The total power required for life support systems for the entire 
station is 7.7 kW. The total heat generated by these systems, for the entire station, is 1 kW. The Sabatier reactor 
produces 12 kW of heat and for this reason is located outside the habitat modules. Masses external to the station are 
the Sabatier reactor, which weighs 730 kg, and LiOH and LiClO4 at 40 kg per day of emergeny O2 generation/CO2 
removal. 

- Extravehicular Activity - 

For routine maintenance and attending to science experiments, Clarke Station supports daily 2-person 
Extravehicular Activities (EVAs) or spacewalks. EVAs may also be necessary in emergency situations. Airlocks are 
located atop each habitat module and at the docking collar. Each airlock has ample room for two suited crew 
members and their gear. Clarke Station will be equipped with 6 Extravehicular Mobility Units, two in each habitat 
airlock and two in the main airlock at the docking collar. Each EMU has a mass of approximately 127 kg. The EMU 
suits have interchangeable components, which allow for use by numerous crewmembers. Prior to every EVA, 
crewmembers are required to pre-breathe pure oxygen at ambient station pressure for 45 minutes. Because of the 
spin of Clarke Station, an extensive tether system will be used to ensure crew safety during EVAs.  



- Food - 

Food supplies aboard Clarke Station will be ambient instead of refrigerated to reduce mass and power 
required. In addition, ambient food has a longer shelf life than refrigerated food. For a one-year supply for eight 
crew, plus a week supply for sixteen crew during transfer and a 10% emergency margin, the required consumable 
mass is 5600 kg. The total volume needed for food and beverage is approximately 18 m3.  

- Safety Systems - 

Several safety measures are built into the station design in the event of a structural emergency that may be 
caused by micrometeoroid impact. These safety measures include lockdown hatches in the transfer tunnels, tunnels 
that are passable even when decompressed, and strategically placed personal rescue enclosures. To ensure crew 
survivability, EVA access is available from every habitable section of the station. In a ‘worst-case’ scenario, sixteen 
crew could be trapped in a damaged module during a crew transfer period. To safeguard against this scenario, four 
pressurized spacesuits, 12 rescue enclosures, and a personal life support system for each individual are required in 
each habitat as well as at the hub and in the docking section.  

In addition to structural safeguards, a Cautions and Warning System, Fire Safety System, Health 
Monitoring System, and a Medical Facility will be integrated throughout Clarke Station. The Caution and Warning 
System, similar to the one installed on the International Space Station, will allow the crew look up caution and 
warning messages and their required actions. In addition, The Caution and Warning System will consist of visual 
and audio cues that will alert the crew when any system has exceeded or strayed from its operational limits. Fire 
detection and suppression equipment, such as smoke detectors, alarm and warning lights, fire extinguishers, and 
breathing apparatus will be strategically placed in each habitat, the tunnels, and hub. Usage of nonflammable 
materials, such as fireproof bags to place worn clothing in, will further reduce fire risk.  

Health monitoring equipment will insure crew livelihood and gather useful scientific data. Biomedical 
sensors will gather physiological data for telemetry, while Impedance Pneumographs will continuously record heart 
beat (EKG) and respiration rate. Individual dosimeters will measure the amount of absorbed radiation over a given 
period, while Telemedicine Instrumentation Packs (TIP), will be use to conduct telemedical examinations. Clarke 
Station will have a medical unit for each habitat containing a Monitor/Diagnosis System, a Medical Care System, 
and a Countermeasures and Medical Data Management System. 

 
Habitat Interiors 

Figures 11-15 show the interior of the habitat modules.  Blue labels are crew systems related equipment 
while green labels are science related equipment.  Habitat 1 focuses more on science that will be conducted across 
multiple gravity levels, physiology, bone and muscle research, and radiation detection.  Habitat 2 is focused more on 
Mars simulation single gravity level science.  There are a total of 4 International Standard Payload Racks (ISPR) in 
the habitats to allow for science expansion and commercial scientific use. 
 

Figure 11. Habitat 1 Bottom Floor  Figure 12. Habitat 1 Top Floor 

   



Figure 13. Habitat 1 Bottom Floor  Figure 14. Habitat 1 Top Floor 

   
 
 
 
Assembly/Delivery 

- Vehicles- 

 The delivery and return of station hardware and personnel includes four distinct missions, the delivery of 
station hardware, the delivery of station supplies, the delivery and return of crew for rotations, and the return of crew 
in an emergency.  From the orbit of the International Space Station (ISS) a delta V of 3.1 km/s is required to insert 
into a trajectory towards the moon. A second delta V of 0.7 km/s is required at the L1 point to insert into a Lissajous 
orbit around L1. The return trip requires the same deltaV unless aerobraking is used.  A multi-pass aerobraking 
trajectory was designed for a bent bi-conic vehicle to save 3.1 km/s of deltaV on the return trip. 

The delivery of station hardware is the largest of these missions, in terms of mass required, at 315 tons. 
Because the station hardware delivery does not require a round trip, expendable chemical boosters based on the 
currently flying Delta IV upper stage were selected for this mission. Each booster has a fully loaded mass of 
approximately 24 tons with an inert mass ratio of 0.12.  One such booster can deliver 11 tons to the station, and 
staging two boosters enables the delivery of 26 tons. The expended booster weighs 3 tons. 

A 24 ton manned transfer vehicle was designed to carry crew to and from Clarke Station. This crew transfer 
vehicle (CTV) is delivered to Clarke Station using two of the hardware delivery boosters. It is capable of returning 
independently using MMH/N2O4 propellents to de-orbit from the L1 point, and using the multi-pass aerobraking to 
return to an LEO orbit for rendezvous with ISS or the Space Shuttle. Because the propellants are storable, this 
vehicle can also be used as an emergency return vehicle. One CTV must be at the station for to provide a mission 
abort capability whenever the station is manned. 

- Launch and Assembly - 

The first hardware launches will be of the station truss, power supply and docking modules. Crew #1 will 
fly to ISS and construct the lower z truss, consisting of the docking module and the hub. The entire truss structure 
for the station, pre-assembled at ISS will then be launched to L1. Crew #2 will travel to L1 on the first crew transfer 
vehicle to do further truss assembly and inflate components. Then, #2 will return to ISS for construction of the 
habitat modules. Crew #3 will go to L1, install the habs and become Clarke Station’s first inhabitants. There they 
will receive and install equipment packages. Crew #4 will arrive on the second crew transfer vehicle, marking the 
first crew transfer. Crew #5, arriving in July of 2006 will conduct final preparations of the station and station wide 
troubleshooting.  

In addition to hardware, launches will be made for boosters. These cryogenic rockets will take hardware to 
L1. For a 20 ton payload, two boosters are needed, for a 40 ton, three are needed. The two crew transfer vehicles 
will also be launched. These two vehicles will transfer not only the construction crew, but handle future crew 
rotation. 
 



Cost Analysis 

Top-level cost estimations were made for this project using Johnson Space Center’s web based cost 
calculators. The cost estimate for development and production was primarily based on mass, and was calculated for 
the station using a total mass of 315 metric tons. The crew transfer vehicle also has a cost estimate based on a dry 
mass of 18 metric tons. Boosters for transfer to L1, while relatively light and simple systems, also need to be 
developed and produced. All estimates were calculated using a cost fraction of 0.5 and a peakedness of 1. The costs 
for developing the station were spread over six years (2001-2006), and the costs for the crew transfer vehicle and the 
boosters were spread over four years (2001-2004). 

The calculated production and development costs do not include launch costs. The need to use US launch 
vehicles scheduled to be in use in 2005 led to examinations of the Atlas V-500 series, the Delta IV Heavy, and the 
Space Shuttle. A comparison of the three vehicles showed that launching everything on Atlas V’s would be the most 
cost-effective approach. Unfortunately, because of time 
constraints and the need to transport crew, both of the more 
expensive vehicles were found to be necessary.  This 
schedule calls for 28 Atlas V, 21 Delta IV, and 6 Shuttle 
launches over two years for a total cost of 7.9 billion dollars 
as seen in Table 7. 

From calculated cost estimates for development 
and production a yearly estimate for mission operations and 
data analysis was obtained for each system, and a cost 
estimate for the first five years of operation was also 
calculated. The total program costs for development and 
production, plus the first five years of operation of Clarke 
Station are 50.7 billion dollars in 2001-year dollars. 
Performing a cost discounting analysis with a 10% discount 
rate showed that to start the program now and fund through 
the first five years 37.1 billion dollars should go in the bank 
today. 

 

Mass Budget 

The mass budget for Clarke Station was 
formulated by combining subsystem masses. The total 
mass at the time of final configuration design was 
calculated to be 220 metric tons. That mass plus a 30% 
margin was set as the mass budget (315 metric tons) for 
all calculations. Since then, subsystem designs have 
been refined and in many areas the current mass is less 
than the budgeted mass. The current total mass gives a 
44% margin to the original mass budget. Figure 15 
shows a comparison between the budget and the current 
usage. Masses that are over 5000 kg are individually 
represented; all others are folded into a miscellaneous 
category. 
 
Conclusion 

 An artificial gravity space station at the L1 point is a feasible project that can return valuable 
scientific results about the ability of humans to live and work in deep space. Such knowledge would be a valuable 
contribution to efforts to develop manned missions to Mars and long duration lunar missions. The current design 
balances the need to maintain a rotating structure to provide artificial gravity with the complexities of maintaining 
and protecting life in deep space while minimizing the costs of developing and delivering the station.  
 

Figure 15: Mass Summary 

Development Costs 2001 $M Cost Discounting

Station development cost 23200 18400

T. Vehicle development cost 7600 6600

Booster development cost 2700 2300

Launch costs 7900 5100

Total development costs 41400 32400

Operational Costs through 2011

MODA station costs (5yrs) 4000 1900

MODA t. vehicle costs (7yrs) 2300 1200

Booster production cost (5yrs) 500 400

Operational launch costs (5yrs) 2500 1200

Total operational costs (5yrs) 9300 4700

Total program costs: develop-5yrs 50700 37100

Table 7: Cost Summary 
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Outreach 
 
A design project as exciting as an artificial gravity space station draws attention from aerospace professionals and 
nonprofessionals alike. To foster relations with the community, the University of Maryland community and guests 
were invited to attend formal Preliminary and Critical Design Reviews. Attendees at the design reviews included 
professionals from NASA, University of Maryland faculty, graduate students, undergraduates, and family members 
of the design team. During project development, relationships were fostered with engineers at NASA Goddard 
Space Flight Center, Swales Aerospace, and the MIT Man Vehicle Laboratory. The fourth member of the 
presentation team to the Lunar and Planetary Institute received funding for his trip from NASA Goddard. The 
development and design of Clarke Station is documented on an interactive website, www.clarkestation.com, with 
the hope and potential of reaching a global audience. 
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