CREW HEALTH AND PERFORMANCE **ON MARS**

Charlie Stegemoeller NASA Johnson Space Center Human Space Life Sciences Programs Office

Human Space Life Sciences Programs

JSC is lead center for Human Operations in Space, including:

- Space Medicine
- Biomedical Research and Countermeasures
- Advanced Human Support Technologies
 - Advanced Life Support
 - Advanced Human Engineering
 - Advanced Environmental Monitoring and Control
 - elements of Advanced EVA

Human Space Life Sciences Program Office (HSLSPO) coordinates these critical human research support functions for JSC as Lead Center.

Background

- HSLSPO determines critical research areas to assure human health and performance capability to explore and develop space.
- Mars Design Reference Mission is benchmark for determining content and direction of mid- and long-term research activities.
- Near-term focus continues on tasks and techniques to expand human performance on Shuttle and ISS missions.

Elements of Human Health and Performance (HHP)

- Advanced Life Support (supply atmosphere, water, thermal control, logistics, waste disposal)
- Bone Loss (fractures, renal stones, joints, discs, osteoporosis, drug reactions)
- Cardiovascular Alterations(dysrhythmias, orthostatic intolerance, exercise capacity)
- Environmental Health (monitor atmosphere, water, contaminants)
- Food and Nutrition (malnutrition, food spoilage)
- Human Performance (psychosocial, workload, sleep)
- Immunology, Infection and Hematology (infection, carcinogenesis, wound healing, allergens, hemodynamics)
- Muscle Alterations and Atrophy (mass, strength, endurance)
- Neurovestibular Adaptations (monitoring and perception errors, postural instability, gaze deficits, fatigue, loss of motivation and concentration)
- Radiation Effects (carcinogenesis, damage to CNS, fertility, sterility, heredity)
- Space Medicine (in-flight debilitation, long term failure to recover, in-flight mis-diagnosis)

Why Mars?

Mars design reference mission requires most rigorous life sciences critical path of any crewed mission in foreseeable future.

Mars DRM

- 30 months round-trip
- four g-transitions: 1g to 0g; 0g to 1/3g; 1/3g to 0g; 0g to 1g
- two episodes of high (up to 5) gload: Mars aerobrake; Earth aerobrake
- high physical demands of Mars surface EVA, possibly daily
- exposure to spacecraft, terrestrial and extraterrrestrial toxins
- largely autonomous; ground support limited to trending

Current Experience and ISS Requirements

- longest flight to date: 14 months ISS tours: 3-6 months
- two g-transitions:
 1g to 0g; 0g to 1g
- one episode of low (1.5-2) g-load:
 Earth aerobrake (via Shuttle)
- orbital EVA; regular daily exercise
- exposure to spacecraft and terrestrial toxins only
- access to real-time ground support

Human Space Flight Experience Greater Than 30 Days (as of 1 Jan. 98

Physical Challenges to HHP: **Gravity and Acceleration**

Earth	Transit	Mars	Mars	Mars	Transit	Earth
Launch	[_]	Landing	Surface	Launch		Landing
		<u> </u>				

G-Load	up to 3 g	0 g	3-5 g	1/3 g	TBD g	0 g	3-5 g
Notes	boost phase, 8 min.; TMI, minutes	4-6 months	aero- braking, minutes; parachute braking, 30 sec.; powered descent, 30 sec.	18 months	boost phase, minutes; TEI, minutes	4-6 months	aero- braking, minutes; parachute braking, minutes
Cumulative hypo-g	0		4-6 months		22-24 months		26-30 months
G Transition	1 g to 0 g		0 g to 1/3 g		1/3 g to 0 g		0 g to 1 g

Impacts of Extended Weightlessness on HHP

Physical tolerance of stresses during aerobraking, landing, and launch phases, and strenuous surface activities

- Bone loss
 - no documented end-point or adapted state
 - countermeasures in work on ground but not yet flight tested
- Muscle atrophy
 - resistive exercise being evaluated
- Cardiovascular alterations
 - pharmacological treatments for autonomic insufficiency
- Neurovestibular adaptations
 - vehicle modifications, including centrifuge
 - may require auto-land

"Artificial Gravity" as Countermeasure to Weightlessness

Question: Can AG preserve physiological function on long-duration missions?

Implications:

- Can Mars DRM afford weight, power, cost of AG?
 - dual systems for 0 g and AG phases of transits?
- How will NASA validate approach?
 - ISS small-animal centrifuge not available before CY 2003
 - larger centrifuge not currently planned

Physical Challenges to HHP: Radiation

	Earth Launch	Transit	Mars landing	Mars Surface	Mars Launch	Transit	Earth Landing
Source	van Allen (trapped radiation) belts	GCR (quiet Sun); SPE (active Sun); nuclear power reactor		GCR (quiet Sun); SPE (active Sun); nuclear power reactor		GCR (quiet Sun); SPE (active Sun); nuclear power reactor	
Expo sure	SEP option: 3 passages or more	4-6 months		18 mon.; shielded by Mars' bulk and atmos.		4-6 months	
Cum. Exp.	hours- days		4-6 months		22-24 months		26-30 months

Peak Physical Challenges for HHP: Mars Surface Phase

(Post-Landing through Pre-Launch)

Assumption

Mars surface gravity

- too low to be beneficial (bone integrity, etc.)
- too high to be ignored (g-transition vestibular symptoms)

<u>Challenges</u>

- physical
 - g-transition (first few days only?)
 - prolonged exposure to 1/3 g
 - high-intensity surface activity
 - EMU hypobaric environment
 - 70 kg EMU (partially self-supporting)
 - surface trauma risk
- no real-time MCC support
 - crew highly autonomous
 - Earth monitoring for trend analysis only

Peak Physical Challenges for HHP: Strategy for Mars Surface Ops

Background: anecdotal evidence suggests only ~50% of Russian Mir crewmembers are ambulatory with assistance immediately after landing, increasing to nearly 100% within hours

Assume: only 3 out of 6 Mars crewmembers ambulatory immediately after landing

Strategy: start with initial passive IVA tasks, then progress to strenuous EVA tasks

- first 1-3 days limited to IVA reconfig of lander/habitat, surface recon
- then, first EVA(s) in vicinity of lander (umbilical instead of PLSS?)
- next, use unpressurized rover for early, shorter excursions
- after a week or more, extended excursions possible

HHP Mars Surface Stay Requirements

Autonomous

- Medical care
- Nutrition
- Psych support
 - meaningful work
 - communications capability (surface, deep space)
- Habitat Facilities
 - exercise
 - workshop
 - recreation

Life Sciences on Mars Surface

Periodic (monthly?) health checks:

- bone integrity
- cardiovascular/cardiopulmonary function
- musculoskeletal fitness
- blood work

Assessments will also serve as applied research:

- probably longest period away from Earth to date
- probably longest exposure to hypogravity (1/3 g) environment to date

Space Medicine Issues

Based on US and Russian space flight data, and US astronaut longitudinal data, submarine experience, Antarctic winter-over experience, and military aviators:

Significant Illness or Injury = 0.06 per person per year (or PYE)

- requiring emergency room (ER) visit or hospital admission
- by US standards

For DRM of 6 crewmembers and 2.5 year mission, expected incidence is 0.90, about one person per mission

Subset requiring intensive care support (ICU) = 0.02 per PYE Expected incidence is 0.30, about once per three missions

Space Medicine Issues: Space Flight Incidence of Illness and Injury

Common (> 50%incidence)

- skin rash, irritation
- foreign body
- eve irritation, corneal abrasion
- headache, backache, congestion
- gastrointestinal disturbance
- · cut, scrape, bruise
- musculoskeletal strain, sprain
- fatigue, sleep disturbance
- space motion sickness
- post-landing orthostatic intolerance
- post-landing neurovestibular symptoms

Incidence Uncertain

- infectious disease
- cardiac dysrhythmia
- trauma, burn
- toxic exposure
- psychological stress, illness
- kidney stones
- pneumonitis
- urinary tract infection
- spinal disc disease
- radiation exposure

data from R. Billica, Jan. 8, 1998

Space Medicine Issues: **Recommended Clinical Care Capability** Development

Clinical Care

- imaging capability
- trauma care
- surgical capability
- noninvasive diagnostics
- respiratory care/advanced ventilation
- hyperbaric treatment
- medical informatics, telemedicine
- radiation treatment
- blood substitutes
- urologic diagnosis, treatment
- extended shelf-life pharmaceuticals
- body disposal, palliative treatment
- serological capabilities
- banked autologous marrow

Prevention and Countermeasures

- · reconditioning, rehabilitation
- preventive medicine
- recycling of resources
- toxin dust management
- · sterile water
- resistive exercise training
- · radiation prophylactics
- microbiology

data from R. Billica, Jan. 8, 1998

Human Factors and Habitability

The following require engineering solutions to optimize HHP:

- clean air
- clean water
- waste management
- adequate food
 - long-duration storage
 - grain processing
- particulate analyzer
- microbial analyzer
- clothes washer
- lighting
 - intensity (threshold level)
 - periodicity (circadian rhythmicity)

Conclusions

- The human element is the most complex element of the mission design
- Mars missions will pose significant physiological challenges to crew members
- Some challenges (human engineering, life support) must be overcome
- Some challenges (bone, radiation) may be show-stoppers
- ISS will only indirectly address Mars questions before any "Go/No Go" deci-
- Significant amount of ground-based and specialized flight research will be required — Critical Path Roadmap project will direct HSLSPO's research toward Mars exploration objectives