
Remote Sensing Instrument Technologies

Robert Gold

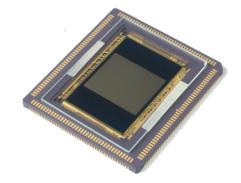
January 24, 2011

Remote Sensing Trends

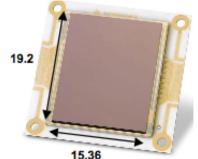
- Emphasis is technology trends for scientific observations around small bodies throughout the solar system
 - NEO's, asteroids, comets, small satellites, Trojans, Centaurs, TNO's
 - Highlight instrument technologies expected to be important over the next 10-20 years.
- Universal goals of higher performance, smaller and lighter, lower power, and especially lower cost
- There are many types of instruments for remote sensing of many parameters
 - Talk will try to show the technology trends and point out some advanced technology needs

Electronics

- General trend in electronics is moving the analog to digital transition closer to the toward front end of instruments
 - Almost all scientific measurements start as analog signals
 - Putting more into digital regime improves performance while often reducing size and power, plus adding programming flexibility
 - The capacity of FPGAs is still increasing rapidly so there is more capability to do refined processing
 - This trend is expected to continue over next decade and beyond
- Radiation-hard integrated circuits are in ever decreasing supply


Imagers and Spectrometers

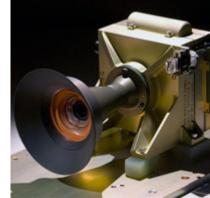
- Imagers are the most ubiquitous instruments for small body missions
 - Several technology trends are changing the imager landscape
 - Sensors CMOS vs CCD focal plane arrays
 - Optics Advances in both refractive and reflective
 - Electronics Readouts and digital processors
- Optical spectrometers and imaging spectrographs are planned on most new small body missions
 - Reflectance spectroscopy for mineralogy covers wide range of wavelengths from UV through IR
 - UV spectroscopy for cometary comas and exospheres


Imager - Sensors

- There is a trend away from CCD sensors to CMOS
- CCDs require very pure silicon, are not very radiation hard, and are inflexible
 - CCD must transfer photoelectrons in bucket brigade fashion across the full chip.
 - Very small errors in charge transfer efficiency have a dramatic effect after 1000 transfers (0.999¹⁰²⁴ = 0.359)
- CMOS sensors are made of "standard" integrated circuit silicon
 - They address each pixel individually, no bucket brigade
 - CMOS sensors can have processing electronics on the same chip
 - CMOS technology is being driven by cell phone and digital camera industries
 - Easier to radiation harden
 - Non-uniformity requires active correction

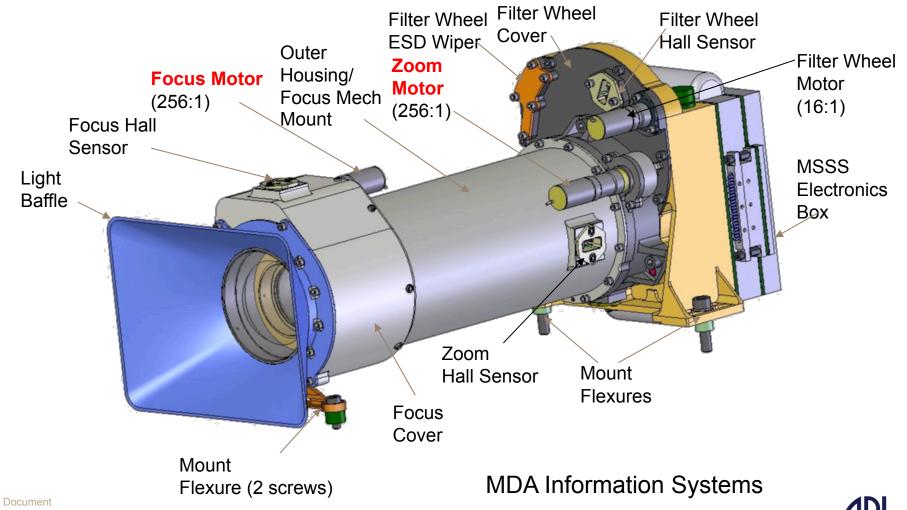
Thermal Imager - Sensors

- HgCdTe cooled focal plane arrays can be made to cover Near, Mid, or Far IR by varying the composition
 - Array sizes continue to grow, now reaching (1024)² and (2048)² sizes
 - Sensors must be cooled to cryogenic temperatures, so availability of long-life cryocoolers is also a limiting constraint
- Uncooled bolometric array sensors are also reaching large sizes
 - Vanadium Oxide sensors are most popular, but Barium Strontium Titanate and amorphous Silicon are still contenders

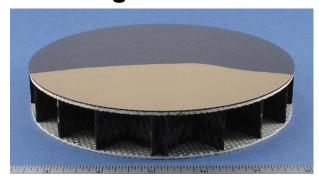


Sofradir 1280x1024 bolometer

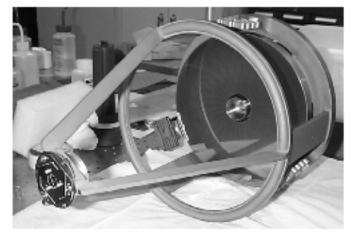
Imagers - Lenses


- Optics sizes are mostly determined by the physics of the observations, however lenses and reflective optics are steadily improving
 - Lenses-
 - Aspheric elements can improve performance and reduce the number of elements in the lens
 - Graded-index elements use a gradient in the index of refraction to eliminate aberrations in spherical lens elements
 - Focus and zoom mechanisms are starting to appear in space missions

Malin Space Science Systems



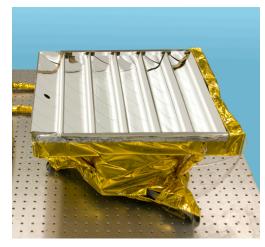
Zoom Mastcam


Imagers – Reflective Optics

- Trends toward new mirror materials that are thinner, stiffer, and lighter weight
- Beryllium is very stiff and light, but quite expensive
- Silicon carbide technology is improving and is becoming commonplace
- Carbon fiber replica optics are steadily advancing and are likely to be much lighter for large mirrors
 - Will enable meter class mirrors with sub kg mass

Carbon fiber replica mirror

CRC inc.


New Horizons LORRI SiC

JHU/APL

Spectrometers and Spectrographs

- Sensor array improvements continue to be as important for spectrometers as for imagers, often using the same array
- Diffraction grating technology improvements are helping to improve resolution and reduce aberrations
- Silicon carbide and carbon fiber composites for the optical bench are making the spectrographs lighter

Moon Mineralogy Mapper (M3) JPL

Magnetometers

- Traditional fluxgate magnetometers are filled with delicate analog electronics
- Digital magnetometers reduce this to a probe head, A/D converter, D/A converter and digital electronics
 - Replace a 4 kg instrument with a 0.4 kg magnetometer
- Scalar magnetometers usually depend on optical pumping of a spectral line
 - They require a high intensity, precisely tuned source
 - Improvements in diode lasers are making these instruments much smaller and more rugged

Magnetometer head

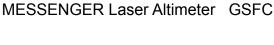
Analog Magnetometer has many delicate tuned circuits

Plasma and Energetic Particles

- While these are some of the oldest forms of space instrumentation, there are important trends in instrument configuration
- Plasma and energetic particles want full 4π coverage
 - Observing spacecraft are usually 3-axis oriented so very wide field of view instruments are needed
 - Hemispherical plasma and energetic particle instrument are emerging
- Solid state detectors and avalanche photodiodes with very thin dead layers are enabling lower energy thresholds

Plasma instrument with $\sim 2\pi$ fov U Mich

Particle instrument with $\sim 2\pi$ for APL


Gamma-Ray, X-Ray, and Neutron Spectrometers

- These are the primary instruments for remote atomic composition measurements need significant technology developments
- Traditional gamma-ray scintillation detectors have poor energy resolution
 - High-purity germanium (HPGe) has excellent resolution, but requires cryocooling
 - Mars Odyssey (passive cooling) and MESSENGER (active cooling) have demonstrated HPGe for planetary missions
 - New long-life cryocoolers are needed
- X-ray instruments are still reliant on gas proportional counter for large area detectors
 - Large area solid state detectors with better than 250 eV resolution are needed
- Neutron sensors are excellent for detecting water and ice, but existing neutron sensors also have very poor Mars Odyssey GRS UAZ energy resolution. New detectors needed

Radars and Lidars

- Radar technology is limited by the size of antennas
 - Low frequency radars for examining internal structure require very large antennas
 - Future trends are likely to have electrically steered, sparse phased array antennas
- Lasers suitable for lidars are evolving rapidly. Diodepumped solid-state slab lasers are being challenged by fiber optic lasers and disk lasers
 - Laser altimeters have operated at the Nd:YAG wavelength of 1064 nm, but newer designs are expected to operate at wavelengths that are better matched to their detectors
 - Flash and multi-beam lidars can generate a topo-map with each laser pulse

Technology Improvements Needed

- Large, low noise focal planes and readout circuits
- Very light weight reflective optics
- High performance, rad-hard, refractive optics
- Analog and mixed signal rad-hard integrated circuits
 - A/D and D/A converters, Field Programmable Analog Array
- Small, high efficiency, long-life, cryocoolers
- Miniaturized vector and scalar magnetometers
- Low energy solid state particle detectors
- Hemispherical plasma spectrometers
- Miniaturized HPGe gamma-ray detectors
- Large area, high resolution, X-ray sensors
- Improved neutron detectors
- Small, high efficiency, pulsed lasers
- Multi-beam, mapping lidar
- Active-pixel phased array radars

New Technology Concepts Required

- Ability to sense internal structure of a small body remotely
 - Differentiation
 - Internal layering
 - Identify subsurface ice concentrations
- Remote Raman spectrometer for mineralogy
- Remote APXS for atomic composition (alpha particle beam generator)
- Measure small body gravity during flybys
 - High accuracy accelerometers and gravity gradient instrument
 - Improved Doppler tracking
- Measure atomic composition during flybys
 - Active gamma-ray instrument (neutron beam generator)
 - Active X-ray instrument (X-ray beam generator)

