

DI, EPOXI, NExT and Various Tirades

Michael F. A'Hearn

Today in History

NASA

L. Kolokolova

- Impact Flash
 - Nuclear surface layer porosity >75%
 - All input KE (19GJ, and maybe more?) in KE of hot puff
- Excavated ejecta
 - Ice within 2m of surface (excavated ejecta are cold except for first 1-2 seconds); ice grains are long-lived, thus pure (not mantles on dark cores)
 - Excavated material $\geq 3 \times 10^4$ impactors
 - Momentum transfer efficiency ~ 2-3 (high porosity)
 - Excavated grains smaller than ambient --> grains are fragile aggregates
 - Fallback allows measurement of effective g \sim 0.34 mm s $^{\text{-1}}$
 - Implies $\rho \sim 0.4$ g cm⁻³ for bulk nucleus (porosity \geq 65%); v_{esc} ~ 1.4 m s⁻¹; Y < 10 kPa and probably < 1 kPa
 - Excavated volatiles same as ambient (except C_2H_6)
 - Organics (dark ejecta) excess near surface

DI Results - 2

- Ambient comet
 - Ice is on surface but!
 - Only a trace in very isolated areas
 - Unrelated to bulk of outgassing
 - Negligible thermal inertia (but see Davidsson *et al*.)
 - Surface morphological structures vary dramatically among cometary nuclei
 - Layering is ubiquitous from 10m scale to km scale
 - Water must be very near surface (10s of cm)
 - Outgassing is heterogeneous (CO₂ and H₂O come from different parts of nucleus)
 - Dust jets not well correlated with H_2O -
 - Not excess outgassing above exposed ice as widely thought
 - Natural outbursts are frequent (~ 1-2 wk⁻¹)
 - Correlated with rotational phase?
 - Lots of circular depressions, some with raised rims, and all with a size distribution like that of craters on asteroids

- How do we make the layers in comets?
 - Are we seeing primordial cometesimals?
- How do we preserve the porosity during accretion of comets?
 - Are accretion velocities lower than models suggest?
- Is the heterogeneity of outgassing primordial?
 - How do seasonal changes affect the outgassing?
 - If primordial, this means radial mixing of cometesimals
- How are jets made?
- What drives natural outbursts?
- Why is morphology so different in the absence of apparent causes?
- Erosion must keep surface fresh at every apparition so how can there be so many craters?
- Are outbursts ubiquitous?

EPOXI

- Deep Impact flyby spacecraft will fly past 103P/Hartley 2 on 4 Nov 2010
- R~800m, much smaller than 9P/Tempel 1 (or any other comet imaged *in situ*), but more active in total, thus much more active per unit area
 - A different kind of comet that should help sort out the reasons behind the morphological differences seen among comets
- Encounter at r~1.05 AU, Δ ~ 0.14 AU
- Surface brightness relative to Tempel 1
 - Gas 20x, dust 4x, nucleus 2x
 - Much better signals for all aspects
- Encounter geometry improved (approach phase ~ 90°)
 - Spectrometer colder, much less background signal
- Orbital history and phasing different from Tempel 1
 - Perihelion reduced since 1890 in steps to 1940
 - Statistically expect different season than for Tempel 1
 - Helps separate evolutionary from primordial effects
- Higher frequency sampling to understand outbursts
- Expect Surprises!!!

Target Comparison

	Tempel 1	Hartley 2
Nuclear Radius [km]	3.0±0.05	0.8±0.15
Nuclear Albedo	0.04	0.04
Dust Production = log(Af _p) [cm]	2.2	2.6
Water Production = log(Q(OH)) [s ⁻¹]	27.6	28.5
r _⊙ [AU]	1.49	1.06
∆ [AU]	0.9	0.16
Encounter Speed [km/s]	10.3	12.3
Approach Phase [°]	63	86

- 29 Dec 2008 completed successfully, transfer to higher inclination orbit
- 29 Jun 2009 approach from north, CA~1.35E6 km
- 28 Dec 2009 approach from south, CA~1.34E6 km
- 27 Jun 2010 approach from north, CA~3.04E4 km
- 4 Nov 2010 Encounter Hartley 2, CA~750km
- Observations for 60 days on approach & 30 days on departure
- At CA, nuclear diameter \sim 1000 pixels in HRI, \sim 200 pixels in MRI

- Stardust spacecraft (minus sample canister) to fly past 9P/Tempel 1, 14 Feb 2011
 - Roughly 1 orbit + 1 month after Deep Impact
- Key Goals
 - View the DI crater
 - dust was too fine and too numerous for DI to see through
 - Size of crater places more constraints on the yield (shear) strength of the surface layers
 - View more of the surface
 - Trace layering across the nucleus
 - Study the erosion of the surface over an orbital period
 - Is it uniform?
 - Which terrains evolve the most?

NExT Encounter

What Next?

- Follow the water!!! We can discover water in comets as well as on Mars
 - Comets are still the most nearly pristine bodies that we can reach and thus most likely to tell us about solar system origins if we can make the right measurements
- ESA will place Philae on surface of 67P/Churyumov-Gerasimenko and follow it from > 3AU through perihelion
 - Dramatic increase in understanding of top 10s of cm of one location
 - Dramatic increase in understanding of evolution around an orbit
- Next big step is a bulk sample return
 - Get enough rare grains to do real isotopic studies and thus get proper ages
 - Return the organics unmodified
 - Try to return the volatiles as ice, but at least a complete inventory of them
- Should be New Frontiers but!
 - If cost caps don't rise appropriately it won't fit
 - If NF allows over-budget Discovery proposals, then strategic/flagship missions should be opened up to NF missions that don't fit NF if the science is compelling
 - bulk sample return is as important as, and most likely cheaper than, Europa or Titan for a flagship mission
 - Even CRYOGENIC sample return from a comet is easy compared to Mars sample return and will almost certainly lead to greater breakthroughs in understanding the solar system and its origin

- Must keep PI-led missions to ensure enough flight opportunities
 - Will some Discovery missions be allowed to fail? What is the riskreward trade?
- Must not let MSL eat the entire planetary exploration budget
- Flight opportunities for technology are crucial
 - How do new technologies fly on science missions?
 - ASRGs are one of several technologies that need to become flight qualified, also new comm systems
- NASA is capable of leading
 - Don't follow the herd trying to do better what ESA, JAXA, ISRO, etc. are doing (unless they are clearly going to do an inadequate job)
 - BUT! Ensure US scientists are involved in those missions
 - Make sure the data become available to US scientists promptly
 - Dare to do the breakthrough missions that others don't do
 - Allow or invite scientists from other countries as needed but take the lead
 - Measurements in totally new regimes are the key to breakthroughs
- Fix ITAR so that foreign collaborations are practical
 - Get the community to work with congress