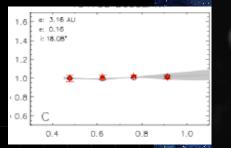
Near Earth Asteroid Scout

MSFC/JPL/LaRC/JSC/GSFC/NASA


One of three 6U Cubesats sponsored by Advanced Exploration System, Joint Robotic Program to fly on SLS EM-1

GOALS

Characterize one candidate NEArwith an imager to address key Strategic Knowledge Gaps (SKGs) Demonstrates low cost capability for HEOMD for NEA detection and

reconnaissance

Measurements: NEA volume, spectral type, spin and orbital properties, address key physical and regolith mechanical SKGs

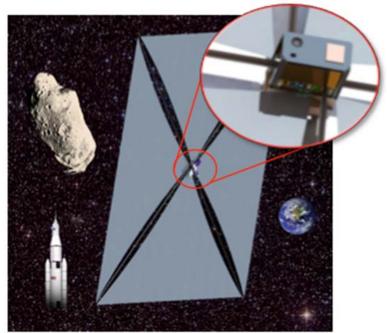
- 19 NASA center-led concepts were evaluated and 3 were down-selected for further refinement toward an Mission Concept Review (MCR) planned for August 2014
- Primary selection criteria:
 - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs)
 - Life cycle cost
 - Synergistic use of previously demonstrated technologies
 - Optimal use of available civil servant workforce
- Project in Development
- Completed a Non-Advocate Review of the Science Plan (May '14) and MCR/SRR-lite (Aug '14)
- Current status is technology demonstration

Payload NASA Centers	Strategic Knowledge Gaps Addressed	Mission Concept	
BioSentinel ARC/JSC	 Human health/performance in high- radiation space environments Fundamental effects on biological systems of ionizing radiation in space environments 	Study radiation-induced DNA damage of live organisms in cis- lunar space; correlate with measurements on ISS and Earth	
Lunar Flashlight JPL/MSFC	 Lunar resource potential Quantity and distribution of water and other volatiles in lunar cold traps 	Locate ice deposits in the Moon's permanently shadowed craters	
Near Earth Asteroid (NEA) Scout MSFC/JPL	 Human NEA mission target identification NEA size, rotation state (rate/pole position) How to work on and interact with NEA surface NEA surface mechanical properties 	Flyby/rendezvous and characterize one NEA that is candidate for a human mission 2	

Why NEA Scout?:

- Characterize one candidate NEA with an imager to address key Strategic Knowledge Gaps (SKGs)
- Demonstrates low cost reconnaissance capability for HEOMD (6U CubeSat)

Leverages:

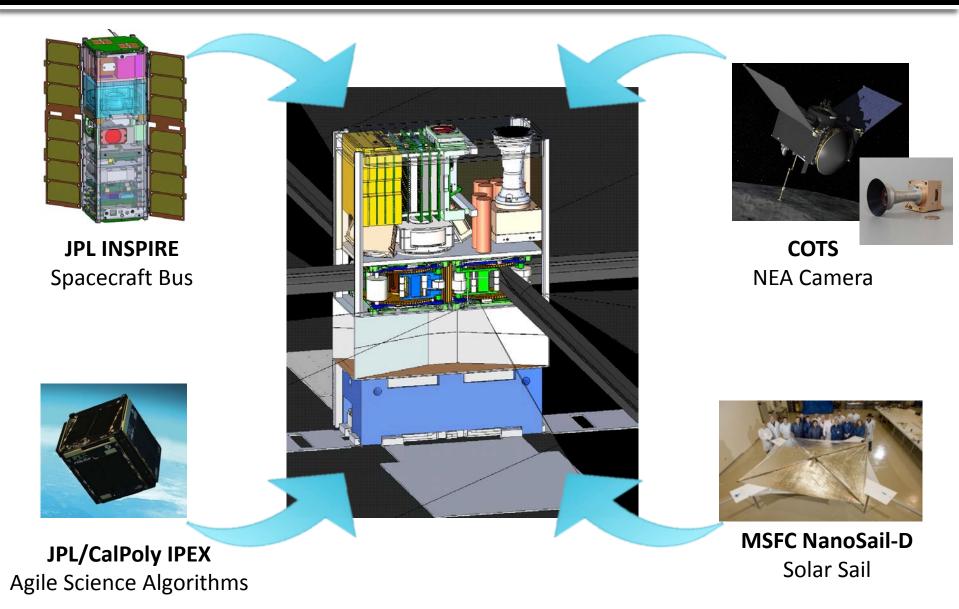

- Solar sail development expertise (NanoSail-D, Sunjammer, LightSail-1)
- CubeSat developments and standards (INSPIRE, University & Industry experience)
- Synergies with Lunar Flashlight are in review (CubeSat bus, solar sail, communication system, integration & test, operations)

Measurements: NEA volume, spectral type, spin mode and orbital properties, address key physical and regolith mechanical SKG

- ≥80% surface coverage imaging at ≤50 cm/px
- Spectral range: 400-900 nm (incl. 4 color channels)
- ≥30% surface coverage imaging at ≤15 cm/px

Key Technical Constraints:

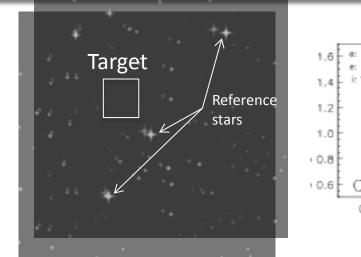
- 6U CubeSat and ~80 m² sail to leverage commonalities with Lunar Flashlight, expected deployer compatibility and optimize cost
- Target must be within 1 AU distance from Earth due to telecom limitations
- Slow flyby with target-relative navigation on close approach

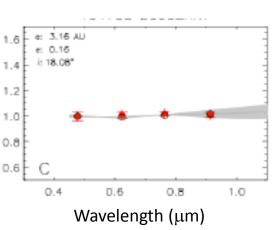


NEA Scout Heritage & Capability Infusion

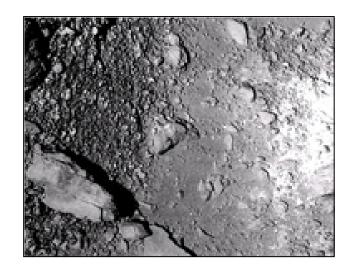
HEO-Defined Strategic Knowledge Gaps	Expected Performance	Risk Reduction or Benefit	
Location (position prediction/orbit)	OCC decrease to 0	\circ \circ \circ	
Size (existence of binary/ternary)	High accuracy on size, detection of satellites	\circ \circ \circ	
Rotation rate & pole orientation	High accuracy on pole and velocity	\circ \circ \circ \circ	
Particulate environment/Debris field	Characterization of particle density in target vicinity	$\bigcirc \bigcirc $	
Regolith mechanical & geotechnical properties	<i>Indirect</i> (imagery interpretation)	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Mass/density estimates (internal structure)	<i>Indirect</i> (based on taxonomic characterization)	\bigcirc \bigcirc \bigcirc	
Surface morphologies and properties	Morphology at resolution of astronaut's foot	\circ \circ \circ \bullet	
Mineralogical & chemical composition	Indirect from taxonomic characterization	$\bigcirc \bigcirc $	

🔵 Cost


Performance Science/Engineering


Ref – Abell and Castillo, After SKG Report (Rivkin et al. 2012)

Prospective NEAScout Exploration Science Products



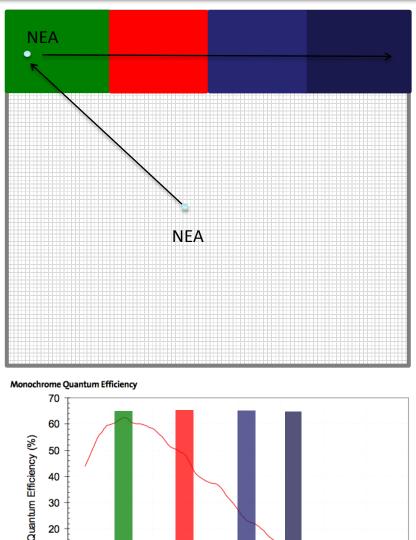
Target Detection and Approach Light source observation SKGs: Ephemeris determination and composition assessment Target Reconnaissance 50 cm/px resolution over 80% surface SKGs: volume, global shape, spin rate and pole position determination

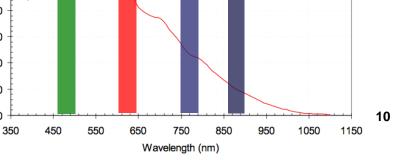
Close Proximity Imaging

High-resolution imaging, 15 cm/px GSD over >30% surface SKGs: Medium-scale morphology, regolith properties, and local environment characterization

- H=28.4±0.7
- Diameter ~ 5-12 meters
- Albedo is unknown
- Position is known within 2700 km (1-σ) but optical observation opportunity in July '17 will decrease uncertainty to a few 100s km
- Rotation period between a few minutes and less than 1 hr
- Unlikely to have a companion
- Unlikely to retain an exosphere or dust cloud
 - Solar radiation pressure sweeps dust on timescales of hours or day

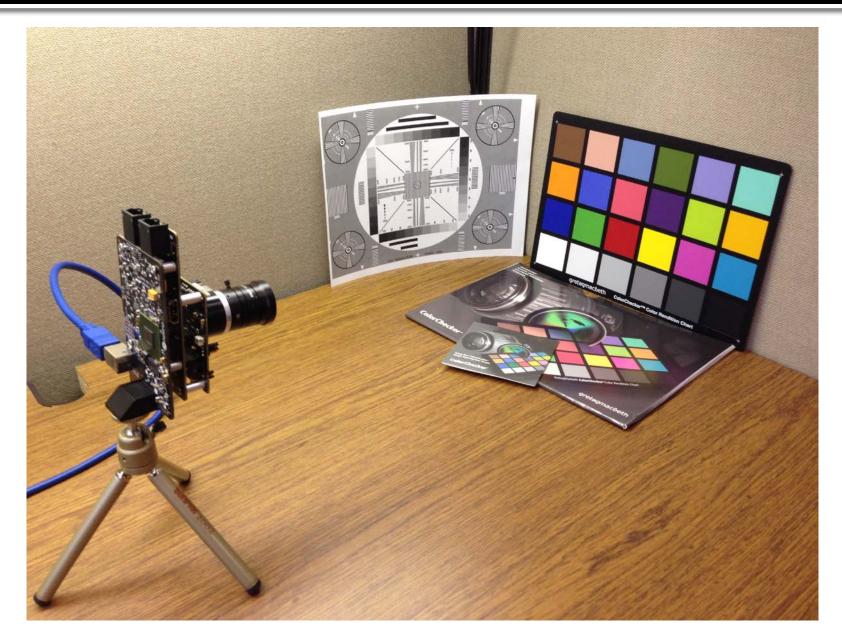
Secondary Targets	Absolute magnitude	30% albedo Diameter (m)	5% albedo Diameter (m)	Orbit Condition Code	Observation Opportunity prior to launch
2001 GP ₂	26.9	10	25	6	Depends on launch date 2020-10 (Optical)
2013 BS45	25.9	11	51	0	2015-01 (Optical)
2008 EA ₉	27.7	7	17	5	none
2012 UV_{136}	25.5	19	47	1	2014-08 (Optical) 2020-05 (RADAR)

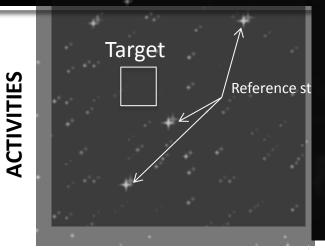




Baseline

- MSSS ECAM M-50 camera with **NFOV** lens
- COTS, TRL 8 via OSIRIS-Rex, excellent IFOV & FOV, volume, power
- Aptina MT9P031 FPA





Strategies for Science Imaging with Constrained Resources

Target Detection and approach with wide field imaging **Ephemeris determination**

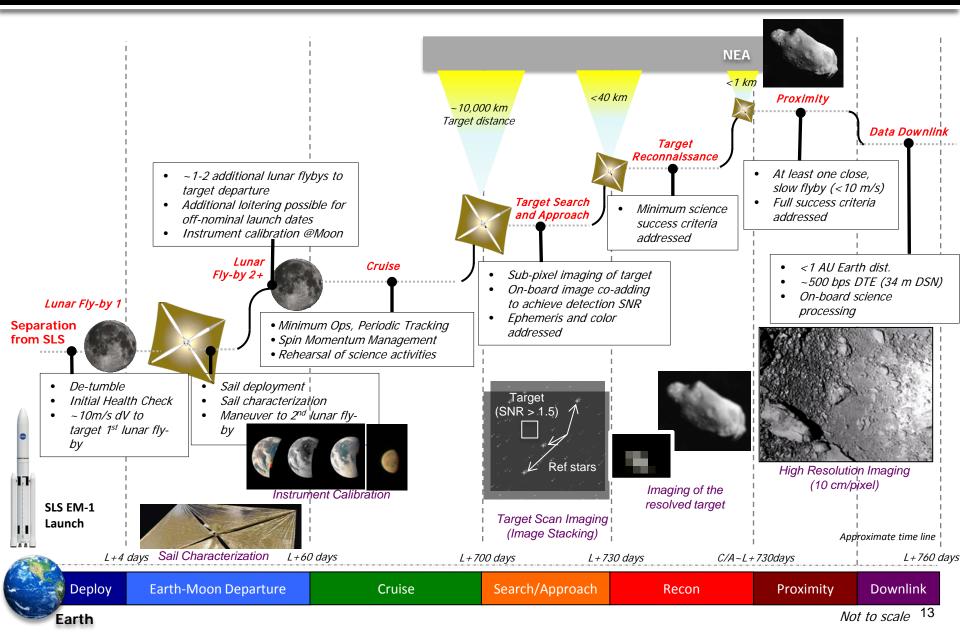
CHALLENGES APPROACH

Limited downlink (<500 bps) Limited camera capability Large target position uncertainty

Target Reconnaissance with medium field imaging Shape, spin, and local environment

Limited downlink (<500 bps) Short flyby time (<30 min) Uncertain environment

Close Proximity Imaging


Local scale morphology, terrain properties, landing site survey

Limited downlink (<500 bps) Short time at closest approach (<10 min.)

Autonomous target pointing Thumbnails, triage, lossless compression, subwindowing

- First imaging and characterization of an NEA smaller than 100 m
 - Will retire SKGs at 1991 VG (size, rotation)
 - Will also address SKGs that are relevant to all objects in that class range (e.g., surface state, local environment)
- First demonstration of a low-cost, SKG-driven mission
 - Combines asteroid detection/tracking and close proximity science capabilities
 - Paves the way for multi-spacecraft exploration of NEAs
 - Complementary to Earth-based surveys with ground truth connection to astronomical observations
- Complementary to other missions scheduled in the same timeframe (OREx, Hayabusa 2)

- Development is going well
 - Funding pressure is pushing the team to be creative ③
- Current ConOps for 1991 VG allows 15 m/s at closest approach
 - Current analysis for flight system slewing capability indicates that target falls off the field of view at about 0.8 km distance
 - Corresponds to ~15 cm/px resolution
 - Trades on power modes and configuration in progress to decrease velocity/increase resolution
- Development of EPO material and website under way
 - Will likely be developed under NASA's DREAM node led by NEAScout's co-I Bill Farrell
 - Possible involvement of *The Planetary Society* for activities involving the public at large, such as Asteroid Naming contest

AstroRecon 2015

Conference on Spacecraft Reconnaissance of Asteroid and Comet Interiors

January 8–10, 2015 Tempe, Arizona