

A Comprehensive Survey of the Solar System

NEOCam is a dual-channel imager operating in a single step-and-stare survey mode.

- 50 cm telescope
- Two 16 megapixel HgCdTe focal planes at 4-5.4 & 6-10 ∫ m simultaneously imaged
- Detectors <u>passively</u> cooled to 40K
- Sun-Earth L1 orbit
- First proposed 2005: Category II
- Awarded technology development funding in 2011 Discovery
- Proposed to 2015 Discovery

NEOCam Purpose

- NEOCam is an exploration mission designed to find, track, and characterize small bodies throughout our solar system
- It is optimized for NEO search and discovery, leveraging the experience from WISE/NEOWISE
- We expect to discover ~100,000 new NEOs & millions of MBAs, a significant improvement on the number known today

Optimized for NEOs & MBAs

Orbit: Sun-Earth L1 Lagrange Point

NEOCam Viewing Zones

NEOWISE Viewing Zone

- Close, constant distance from Earth allows full-frame images to be downlinked
- Thermal environment allows passive cooling to 40 K
 - Key enabling technology

Credit: Scott Manley/Armaugh Observatory

Surveys allow comparison of entire populations

Surveys find the most unusual objects

0.0 yr

First known Earth Trojan

Asteroid 2010 TK7

Athabasca University, the University of Western Ontario and the Canada-France-Hawaii Telescope.

NEOCam: A Powerful Method of Characterizing Populations

NEOCam Science

Planetary Defense

- Detect millions of small bodies throughout the solar system, including 2/3 of PHAs >140m
- Constrain impact probability for NEOs & comets of all sizes

Structure, Origins, & Evolution of Populations

- Population studies: numbers, orbital distribution, physical properties of Main Belt Asteroids, Jovian Trojans, comets
- Origins of collisional families, NEOs
- Identify and characterize rare populations: Earth Trojans, interior NEOs
- Most comprehensive collection of comet orbit distributions, sizes,
 & CO/CO₂ abundances

Finding New Destinations

Find the most accessible targets for future exploration

10 NEOCam Science Objectives

- Detect 2/3 of PHAs >140 m within 5 years
- Determine impact probability for
 - -NEOs > 20 m
 - Comets
- Identify sources of NEOs
- Identify asteroid collisional family members down to 1.5 km throughout asteroid belt
- Map distribution of low albedo material
- Determine sizes & orbital distribution of long & short period comets
- Constrain the population of Earth co-orbitals
- Identify low ∆v NEOs

Constraining NEO Origins

- Combining orbital parameters w/ diameter & albedo allows NEO origins to be probed
- NEOCam senses
 MBAs down to
 similar sizes as large
 NEOs

Link between Euphrosyne asteroid family & NEOs

- Euphrosyne-linked NEOs (red)
 have darker albedos than most
 NEOs (black), & span albedo of
 known family members (blue)
- Euphrosyne may represent an important source of primitive material to NEOs

- Simulations show family members evolve onto high-I, high-e NEO orbits (background heatmap)
- Most known NEOs populate different region (grey points)
- Only 1% of NEOs in Euphrosynelinked region (green points)

Link between Euphrosyne asteroid family & the NEOs

- Family members evolve onto orbits also similar to Jupiter Family Comets (e.g. T_J<3)
- Albedos of family members complete to ~6 km, while NEOs found in evolved region are 0.5-3 km in diameter.
- Complete survey of family to ~1.5 km will allow direct comparison of small family members to observed NEOs to confirm connection
- Albedos & diameters of JFCs will allow for distinction between objects that are extinct comets & objects that originated in (presumed) volatile-poor Euphrosyne family

Comet Volatile Abundances

Comet Dust Temp

- NC1 is centered on CO & CO₂ bands near 4 um
- Obtain CO+CO₂
 ratios for many
 more objects than
 we can now,
 allowing us to
 break populations
 down by orbital
 parameters

(

NEOWISE (prime):

- Short-period comets = 24
- Long-period comets = 12

NEOCam = ~700

Census of Primitive Material in Inner Solar System

- Low albedo asteroids make up vast majority of Main Belt
- Composition includes
 - carbon,
 - hydrated silicates
 - sometimes water & volatiles (e.g. Themis, Ceres)
- Low albedo MBAs are key source of low albedo NEOs
 - May have delivered organics& volatiles to early Earth
- NEOCam: map low albedo component of inner solar system to sizes an order of magnitude smaller than NEOWISE

Synergy with LSST

- NEOCam & LSST together will provide a movie of the sky from near-UV through thermal IR wavelengths
- LSST adds colors & samples a complementary part of orbital element phase space from NEOCam

Potentially Hazardous NEAs >140 m

- The current surveys will take decades to find >90% of PHAs larger than 140 m, effectively relegating the task to another generation
- NEOCam is designed to find >2/3 of PHAs larger than 140 m in 5 years, and a total of ~100,000 NEOs of all sizes

Cadence

- NEOCam's cadence is optimized for NEO discovery
 - Designed for self follow up: no other observatories required to track asteroids
 - Target of Opportunity mode is supported

Data Access

NEOCam returns science data quickly and constantly

Product	Frequency	Access Via
Moving object positions, times	Daily	MPC, IRSA
Images + source databases	2x per year	IRSA
Physical properties	2x per year	PDS, IRSA
Static sky image atlas	1x per year	IRSA

NEOCam Team Heritage

Conclusion

 NEOCam will become the world's premier survey for asteroids & comets, leaving a legacy for posterity

Detector Technology

- 2012: New detector arrays fabricated
 - All exceed NEOCam requirements
- 4 goals for NEOCam detector development:
 - Increase cutoff wavelength to ~10 μm:
 DONE
 - Increase % pixels meeting dark current spec to >=90%: DONE
 - Increase operability (well depth): DONE
 - Increase format from 512x512 to 1024x1024 pixels: DONE

Results

- Operability (defined as % pixels meeting well depth & dark current reqmts) >95% on all three arrays
- Cutoff wavelengths >10 μm for all three arrays
- McMurtry et al. 2013 Journal of Optical Engineering

Radiation test w/ 63 MeV protons

Taxonomy of Asteroids

- Compare size and albedo to visible/nearinfrared spectra from literature
- Two major taxonomic groupings:
 - S or "stony", C or "carbonaceous"

- Noticeable overrepresentation of S types
- Strong observational bias in visible surveys against small, low albedo objects
- Mainzer et al. 2011 ApJ 741, 90

Earth Co-orbitals

- 2010 TK7, first known Earth Trojan (Connors et al. 2010)
 - -380 ± 120 m diameter, $p_V = 6 \pm 5\%$

NEOWISE Data Use

- Total citation count using NEOWISE data & discoveries up to ~100 refereed publications
 - Total citation count for WISE >600 refereed publications

 NEOWISE is a time-domain mid-infrared all-sky survey, so its science spans many areas of astrophysics & planetary science:

Asteroids

Meteoritics

Variable stars

Icy bodies in the outer solar system

Distance ladder determinations for cosmology

Human exploration

Supernovae

- Pulars
- Exoplanets
- Black hole accretion disk

NEO Albedo vs. Diameter

- ~430 NEOs
- No significant change in albedo vs. diameter
 - Albedo is constant all the way down to small sizes
- Contrary to previous studies that are biased against small, low albedo objects

NEOWISE Detections of Small NEOs

 Smallest NEOs detected by NEOWISE are 8m in diameter

NEOCam: A Powerful Method of Characterizing Populations

