

OSIRIS-REX Asteroid Sample Return Mission

Lucy F. Lim- Assistant Project Scientist

THE UNIVERSITY OF ARIZONA • NASA GODDARD SPACE FLIGHT CENTER • LOCKHEED MARTIN

WHAT IS OSIRIS-REX?

- OSIRIS-REx is a PI-led New Frontiers sample return mission to return at least 60 g (and as much as 2 kg) of pristine regolith from asteroid 1999 RQ36.
- Selected in 2011 under PI Mike Drake and Deputy PI Dante Lauretta
- Currently in Phase B
 - PI: Dante Lauretta
 - Deputy PI: Ed Beshore
- Recent Milestones:
 - System Design Reviews complete for five instruments
 - System Requirements Review complete for TAGSAM
 - Mission Definition Review (MDR) complete May 2012
- Mission PDR scheduled for March 2013

THE ASTEROID TARGET: 1999 RQ36

IRTF/SpeX in Sept. 1999, Sept. 2005, and August 2011 (Clark et al. 2011)

B-type spectrum

Kuiper 1.5-m photometry in Sept. and Oct. 2005

Arecibo and Goldstone planetary radar observations in Sept. 1999 and Sept. and Oct. 2005. Delay-only Arecibo astrometry Sept. 2011. (Nolan et al. 2012)

- Mean diameter 493 ± 20 m; Mean equatorial diameter 545 ± 15 m
- Retrograde rotation: pole within 15 degrees of ecliptic south, 4.2968 ± 0.0018 hours
- Polarization ratio (CPR at 12.6 cm) 0.18 ± 0.02

Spitzer IRS (5-38 microns) observations May 2007: Moderate thermal inertia, 400 to 700 J m⁻² s^{-1/2} K⁻¹ (Emery et al. 2010)

• Radar polarization and thermal inertia provide evidence for regolith on the surface available for sampling.

Herschel observations Sept. 2011 (Mueller et al. 2012)

Yarkovsky analysis based on astrometry and Spitzer-derived thermal inertia Chesley et al. (2012) derived a bulk density 0.97 ± 0.15 g/cm³

OSIRIS-REX TIMELINE: SEVEN YEARS FROM LAUNCH TO SAMPLE RETURN

THE OSIRIS-REX SPACECRAFT AND PAYLOAD ELEMENTS

TAGSAM: SIMPLE SAMPLER DESIGN PROVEN RELIABLE IN TESTING

- Regolith fluidized by high-pressure annular N₂ flow
- Mylar check valve retains regolith
- Universal joint conforms to local slope

OUR SAMPLE IS COLLECTED DURING A FIVE-SECOND TOUCH-AND-GO MANEUVER

- Approach surface within vertical and horizontal speed constraints
- Surface contact is made with sampler head
- Compression of spring in the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) arm
- Rebound from surface using stored energy in spring
- Fire thrusters to accelerate away from RQ36

SAMPLES WILL BE ARCHIVED IN THE ASTROMATERIALS CURATORIAL FACILITY AT JSC

- 11.5 g of bulk sample for immediate analysis after Earth return
- 3.5 g for margin
- 45 g archived for future generations
- Within six months of sample return, the OSIRIS-REx science team will produce a catalog containing sufficient information to allow the community at large to propose research with the samples.
- During the subsequent six-month period, the Science Team will be allocated samples to conduct the measurements required to address the mission science objectives.

MISSION TIMELINE

- Selection: May 25, 2011
- Mission Definition Review: May 8-10, 2012
- Preliminary Design Review: March, 2013
- Critical Design Review: April, 2014
- System Integration Review: February, 2015
- Launch: September, 2016
- Earth Gravity Assist: September, 2017
- Asteroid Arrival: October, 2019
- Asteroid Departure: March, 2021
- Earth Return: September, 2023
- End of Mission (Sample Analysis): September, 2025

OSIRIS-REx - The Right Principal In Deputy PI: Team for the Job Principal In Deputy PI: Project Man Flight System

Principal Investigator: Dante S. Lauretta (UA)

Deputy PI: Edward Beshore (UA)

Project Manager: Robert Jenkens (GSFC)

Flight System Manager: Joe Vellinga (LM)

University of Arizona

Principal Investigator & Deputy PI

Project Planning and Control Officer

Mission Instrument Scientist

Science Team Management

OSIRIS-REx CAMera Suite (OCAMS)

Science Processing and Operations Center (SPOC)

Data Management and Archiving

Education & Public Outreach

Goddard Space Flight Center

Project Management

Project Scientist & Deputy Project Scientist

Mission Systems Engineering

Safety & Mission Assurance

OSIRIS-REx Visible and near Infrared Spectrometer (OVIRS)

Flight Dynamics Lead

Lockheed Martin

Flight System

Sampling System

Sample Return Capsule

Mission Operations

Canadian Space Agency - OSIRIS-REx Laser Altimeter (OLA)

Arizona State University – OSIRIS-REx Thermal Emission

Spectrometer (OTES)

KinetX - Navigation/Flight Dynamics

Johnson Space Center - Sample Curation

Indigo Information Services – PDS Archiving

OSIRIS-REX Asteroid Sample Return Mission

Lucy F. Lim- Assistant Project Scientist

THE UNIVERSITY OF ARIZONA • NASA GODDARD SPACE FLIGHT CENTER • LOCKHEED MARTIN

Backup Slides

LEVEL-1 SCIENCE OBJECTIVES

- 1. Return and analyze a sample of pristine carbonaceous asteroid regolith in an amount sufficient to study the nature, history, and distribution of its constituent minerals and organic material.
- 2. Map the global properties, chemistry, and mineralogy of a primitive carbonaceous asteroid to characterize its geologic and dynamic history and provide context for the returned samples.
- 3. Document the texture, morphology, geochemistry, and spectral properties of the regolith at the sampling site in situ at scales down to the sub-centimeter.
- 4. Measure the Yarkovsky effect on a potentially hazardous asteroid and constrain the asteroid properties that contribute to this effect.
- 5. Characterize the integrated global properties of a primitive carbonaceous asteroid to allow for direct comparison with ground-based telescopic data of the entire asteroid population.

Instrument Capabilities

OCAMS

PolyCam acquires 1999 RQ36 from 500K km range, refines its ephemeris, and performs high-resolution imaging of the surface

MapCam provides narrow angle OpNav, performs filter photometry, maps the surface, and images the sample site

–SamCam provides wide-angle OpNav, images the sample site, and documents sample acquisition

-OLA provides ranging data out to 7 km and maps the shape and topography

Instrument Capabilities

-OVIRS maps the reflectance albedo and spectral properties from 0.4 – 4.3 μm

-OTES maps the thermal flux and spectral properties from $4 - 50 \mu m$

-Radio Science reveals the mass, gravity field, internal structure, and surface acceleration distribution

-REXIS is a Student Collaboration Experiment that trains the next generation of scientists and engineers and maps the elemental abundances of the asteroid surface

Can I have more details about the object?

Property	(1019	(101955) RQ36	
Epoch Date		1-January-2019 00:00 TT	
Reference Frame	Sun centered, E	Sun centered, Earth ecliptic & equinox of J2000	
Semi-Major Axis	1.126 AU	1.126 AU	
Eccentricity	0.204	0.204	
Inclination	6.034°	6.034°	
Longitude of Ascending Node	2.018°	2.018°	
Argument of Perihelion	66.304°	66.304°	
Perihelion	0.897 AU	0.897 AU	
Aphelion	1.355 AU	1.355 AU	
Orbital Period	1.195 years	1.195 years	
Mean Diameter	575±28m	575±28m	
Volume	7.1x10 ⁷ m ³	7.1x10 ⁷ m ³	
Bulk Density	1.4 g/cm ³	± 0.7	
Mass	9.9x10 ¹⁰ kg	(+5.4x10 ¹⁰) (-4.5x10 ¹⁰)	
Rotation Period	4.2968 hrs	± 0.0018	
Direction of Rotation	Retrograde	Retrograde	
Obliquity	0 - 15°	0 - 15°	
Pole Position	(0, -90)	±15°	
Taxonomy	В	, , ,	
Albedo	0.030	± 0.003	
Phase Function	0.043 mag/°	± 0.001	
Magnitude of Opposition Effect (OE)	0.10 mags	± 0.10	
Absolute Magnitude w/o OE (w/ OE)	20.51 (20.41)	± 0.20	

1999 RQ36 is One the Most Extensively Characterized NEOs

- -Discovered on Sept. 11, 1999 by the LINEAR survey
- -Observed with the Arecibo Planetary Radar system in Sept. 1999 and Sept. and Oct. 2005 (also with Goldstone)
- -Observed with the Kuiper 1.5-m telescope multiple times in Sept., Oct. 2005, Sept. 2011
- -Observed with the NASA Infrared Telescope Facility in Sept. 1999, Sept. 2005, and August 2011
- -Observed with the Spitzer Space Telescope between May 3rd-8th, 2007
- -Observed with the Herschel Space Observatory, Giant Magellan Telescope, and WHT in Sept. 2011
- -Other observations planned for 2012

SPITZER OBSERVATIONAL CONDITIONS

- 85 cm telescope in heliocentric (Earth-trailing) orbit
- Used two instruments
 - IRS (InfraRed Spectrograph)
 - 5.2 to 38 μm spectra 2 longitudes
 - 16 & 22 μm photometry 10 longitudes
 - IRAC (InfraRed Array Camera)
 - 3.6, 4.5, 5.8, 8.0 μm photometry 10 longitudes
- Match rotational phases of IRS & IRAC
 - SED from 3.6 to 22 μm for 10 longitudes
 - Search for surface heterogeneity
- All observations performed at r \sim 1.1 AU, $\Delta \sim$ 0.5 AU,

RESULTS FROM THE SPITZER OBSERVATIONS PROVIDE INPUT TO OUR THERMOPHYSICAL MODELS

- IRS spectra
 - $8 < \lambda < 14 \mu m \text{ highest S/N}$
 - No silicate features
 - Two observations agree
 - IRAC and IRS photometry
 - No obvious temperature variation with rotation

OSIRIS-REX BENEFITS FROM AND COMPLEMENTS SPITZER SPACE TELESCOPE OBSERVATIONS

- Diameter slightly above radar observations: 635 ± 15 m
- Low albedo is consistent with a primitive composition: 0.028 ± 0.002
- Moderate thermal inertia: 400 to 700 J m⁻² s^{-1/2} K⁻¹
 - Implies regolith with grain sizes of a few mm
 - The thermal inertia of Itokawa is about the same as RQ36 and we know from in situ images that Itokawa has regolith
- Uniform temperature at all rotational phases
 - Suggests that the above properties are constant across the surface

OSIRIS-REX POLARIZATION RATIO (SC/OC) COMPARISON WITH OTHER NEAS

Object	SC/OC	Wavelength
•2005 YU55	0.36+-0.05	3.5 cm
	0.40 + -0.05	13 cm
•1999 RQ36	0.18+-0.01	3.5 cm
	0.18+-0.05	13 cm
•Itokawa	0.24+-0.02	3.5 cm
	0.27+-0.04	13 cm
• Eros	0.28+-0.06	13 cm

• NEA Avg 0.34+-0.25 N = 214 range = 1.5

• Dark NEA Avg 0.29+-0.12 N = 17 range = 0.40

Results from Benner et al. 2008; dark NEA average excludes 2005 YU55

REGOLITH-COVERED BODY WITH A RELAXED SURFACE

- The rotation period and axial ratio imply a minimum density of 0.7 g/cm³
- Assuming a plausible density of 1.4 g/cm³ we find a subdued slope distribution for this asteroid at the spatial resolution of the shape model.
 - Maximum slopes of 33 degrees
 - Near zero slopes in the equatorial region
 - Average slope of 13 degrees

State-of-the-Art Analytical Instruments Cannot Be Flown on Spacecraft

ALS Synchrotron Beamline for XANES

Invent New Instruments

Accelerator Mass Spectrometer