

Amy Mainzer

Jet Propulsion Laboratory

Near-Earth Object Camera (NEOCam)

- Discovery proposal submitted in 2006, 2010
 - Awarded technology development in 2010
- Wide-field imager operating at 2 wavelengths: $4-5 \& 6-10 \mu m$
- 4 year mission to discover & characterize 2/3 of near-Earth objects (NEOs) >140 m, lots of Main Belt asteroids, comets
- NEOCam's primary science objectives are threefold:
 - To assess the present-day risk of near-Earth object (NEO) impact.
 - To study the origin and ultimate fate of our solar system's asteroids.
 - To find the most suitable NEO targets for future exploration by robots and humans.

Heritage

- WISE/NEOWISE, Spitzer, Kepler
 - WISE/Spitzer instrument heritage
 - Spitzer passive cooling
 - WISE/NEOWISE data processing
 - Kepler spacecraft bus
- Partners: JPL, Ball Aerospace, Space Dynamics Lab, Teledyne Imaging Sensors, IPAC
 - Competed selection of partners managed by small team at JPL
 - Science team includes experts in small bodies, IR telescopes, detectors

NEOWISE

- Wide-field Infrared Survey Explorer (WISE) imaged entire sky in 4 IR wavelengths over 1 year mission
 - Partners: JPL, SDL, Ball, IPAC, Teledyne, DRS
- NEOWISE augmentation allowed detection & discovery of new minor planets
 - >158,000 asteroids detected; ~34,000 new discoveries
 - ~600 NEOs observed, 135 new discoveries
 - Physical parameters determined: diameters, albedos, dust properties, etc.
 - Albedo-insensitive survey detects bright and dark asteroids equally well

2011 GAO Report

2009 (dollars in millions)

Project	Development cost			
	Baseline	Current	Difference	Change (%)
Aquarius	\$193.0	\$227.3	\$34.3	17.8
Dawn	\$198.0	\$266.4	\$68.4	34.5
GLAST	\$384.0	\$418.8	\$34.8	9.1
Glory	\$159.0	\$337.6	\$178.6	112.3
Herschel	\$95.0	\$126.7	\$31.7	33.4
Kepler	\$313.0	\$388.7	\$75.7	24.2
LRO	\$421.0	\$451.3	\$30.3	7.2
MSL	\$969.0	\$1,802.0	\$833.0	86.0
NPP	\$513.0	\$780.1	\$267.1	52.1
OCO	\$187.0	\$230.2	\$43.2	23.1
SDO	\$597.0	\$667.0	\$70.0	11.7
SOFIA	\$306.0	\$1,128.4	\$822.4	268.8
WISE	\$192.0	\$191.8	-\$0.2	-0.1
Average			\$191.5	54.99
Total development cost	\$4,527.0	\$7,016.3	\$2,489.3	

Source: GAO analysis of NASA data.

Note: "Baseline" refers to the cost baseline established when the project was confirmed.

Orbit – Why L1

- Earth-Sun L1 Lagrange point allows large fraction of Earth's orbit to be visible at any time
- Cold environment allows passive cooling c.f. Spitzer Warm Mission
- Constant close distance (~1e6 km) allows full-frame data to be downlinked, leveraging WISE/ NEOWISE science data processing heritage
- L1 orbit has heritage from SOHO, Genesis

Detectors

- Teledyne Imaging Sensors HAWAII 1RG and 2RG HgCdTe detectors selected for NEOCam
- HAWAII chips are low background multiplexers used for a wide range of astronomical purposes, ground- & space-based
- Space astronomy heritage: WISE, Hubble WF3, OCO-2, JWST
- SIDECAR ASIC allows cryogenic A/D conversion, commanding, signal processing, eliminating analog elex & cables
- We are fabbing & testing new lots of detectors, funded by NASA Discovery
 - 5 μm cutoff arrays are TIS standard product
 - 10 μm cutoff material is created by altering Hg:Cd ratio, bonded to HAWAII
 1RG WISE/OCO mux

Science Data Processing

- Location @ L1 allows full-frame data to be downlinked
 - Leverages existing science data processing pipeline & archive heritage from WISE/NEOWISE
- When discovering new objects, most are found at low SNR
- Success at detecting sources & linking into tracklets depends on accurate artifact ID, astrometric & photometric calibration
- Developing & testing NEOCam cadence via synthetic survey

(1) L0 (raw) (2) droop-corrected (3) dark-subtracted (4) linearized (5) flattened (6) dynamic delta-flat & sky-offset

