

Asteroid Redirect Robotic Mission (ARRM) Concept Overview

Briefing to SBAG

Brian Muirhead Chief Engineer and ARRM Pre-project Manager, JPL/Caltech July 30, 2014

ARRM Mission Concept

NASA

- Rendezvous with an asteroid and either redirect a whole small asteroid or, a boulder from a large asteroid to the moon's orbit where astronauts can visit it.
- Available for crewed exploration by mid-2020's

Why?

- Mission would bring together important NASA objectives:
 - High power SEP tech demo
 - Operate in close proximity to a nearearth asteroid and return material for exploration
 - Demonstrate planetary defense techniques
 - Prove out SLS/Orion capabilities beyond LEO
 - Extensible to proving ground and Mars mission objectives
 - Demonstrate lean implementation techniques to reduce cost and cost risk

Asteroid Redirect Mission Robotic Concepts

Small Asteroid Capture, Option A

Robotic Boulder Capture, Option B

Current Valid Candidate Asteroids for Mission Design

- > June 2019 launches on Delta IV Heavy assumed
- Data still preliminary, will be finalized in August

Asteroid	Entire Asteroid or Boulder	Return Mass (*max possible)	Asteroid or Boulder Size	Earth Return Date	Crew Accessible in DRO
2009 BD	entire	145 t	3-7 m	Jun 2023	Oct 2023
2011 MD	entire	600 t*	4-12 m	Jul 2024	Aug 2025
2013 EC20	entire	43 t	3-4 m	Sep 2024	Oct 2025
Itokawa	boulder	3.6 t*	1.3-1.6 m	Jun 2024	Jul 2025
Bennu	boulder	9.9 t*	2.2-2.7 m	Feb 2024	Mar 2025
2008 EV5	boulder	14.1 t*	2.5-3.0 m	Jun 2024	Jul 2025

Mission Design Overview

Mission Profile Comparison – Points of Departure

Dhoso / Activity	Small Asteroid (2009 BD)		Robotic Boulder (Itokawa)	
Phase/Activity	Date/Duration	Xenon Use	Date/Duration	Xenon Use
Launch	June 1, 2019		June 1, 2019	
Outbound Leg	1.2 years	920 kg	1.8 years	2,742 kg
Asteroid Rendezvous & Proximity Ops				
Arrival	Jul. 28, 2020		Jun. 22, 2021	
Characterization & Capture	30 days		51 days	
Capture Phase Margin	30 days		18 days	
Planetary Defense Demo	1 hour		51 days	
Missed Thrust Margin	30 days		30 days	
Departure	Oct. 26, 2020		Nov. 19, 2021	
Inbound Leg	2.2 years	1,890 kg	2.6 years	2,160kg
Lunar DRO Insertion	Feb. 2024	130 kg	Aug. 2025	20 kg
ARCM Availability in DRO**	Mar. 2024		Sept 2025	
Assumes Delta IV Heavy for PoD.	Xe used: 2,940 kg		Xe used: 4,922 kg	

SLS could improve performance. *Can return greater mass with later return dates. ** Earlier dates are possible in different transient orbits.

SEP Op Time: 1243 days

Asteroid Return Mass: 30-145t (2.6-7m mean diameter)

SEP Op Time: 1334 days

Boulder Return Mass*: 3.6 t (1.3 m spherical, 1.6 m max extent)

Flight System Summary

Key Driving Objective:

 Minimize the cost and technology development risk with extensibility to future missions within constraints

Architected to provide balanced risk to:

- Uncertainties in asteroid characteristics
- Proximity operations complexity and duration
- Safe crew operations

Flight system features:

- Clean interfaces between SEP,
 Mission and Capture System modules
- High heritage Mission Module, avionics, sensors and core SW
- Conops validated by model-based systems engineering analysis
- JPL Design Principles technical margins

Flight System Deployed Configurations

Architecture-Level Trade Areas

> Reference targets:

- Option A: S-type (2013 EC20, 2009 BD, 2011 MD), TBD (including possible C-type)
- Option B: S-type (Itokawa), C-type (Bennu, 2008 EV5), TBD
- Option C: Phobos/Deimos
- Launch vehicles: Atlas V, Delta IVH, Falcon Heavy, SLS
- ➤ Launch: June 2019 or June, 2020
- ➤ Inform Planetary Defense
 - Demo: IBD, GT or EGT operations capability and/or demo measureable deflection
- > Capture system design options
 - Option A: bag, inflatable, mechanical
 - Option B: hybrid, hover (contingency option for later evaluation), bag
 - Common design for both
- > Arrival for crew accessibility: 2023 through 2025, possible extension to 2026
- > BAA inputs for capture systems, sensors, commercial S/C capabilities and add'I payloads
- ➤ Implementation/Acquisition: range from in-house to system contract
- > Metrics: Cost, cost risk, technical risk, cost phasing
- > FOMs:
 - Extensibility to Mars and the Proving Ground
 - Potential science return
 - Planetary defense demo value
 - Technology infusion to commercial users
 - Commercial/International participation

2009 BD: Max Return Mass vs. Launch Date

2011 MD: Max Return Mass vs. Launch Date

Rendezvous & Prox-Ops Sensors and Other Payloads

P-Pods for up to 6 CubeSats

Rendezvous and Proximity Operations Phases

ARM Capture Device Deployed

ARM Capture Device Sequence: Stowed

ARM Capture Device Sequence: Petal Deployment

ARM Capture Device Sequence: Bag Fully Deployed

ARM Capture Device Sequence: Approach

ARM Capture Device Sequence: Approaching Contact

ARM Capture Device Sequence: Contact ("Docked")

ARM Capture Device Sequence: Initiate Closure

ARM Capture Device Sequence: Closing

ARM Capture Device Sequence: Fully Captured

Option A: Development and Risk Reduction Status

- ➤ Building new, high fidelity 1/5 scale testbed, 3 m dia x 2 m long, inflatable structure supported capture bag
- Design features mechanical initial deployment of 6 arms with inflatable booms at the end of the arms that deploy and control the bag material
- System is designed to be fully operational in 1 g including deployment and capture
- Initial testing of deployment/ inflation, "docking" to the asteroid, and bag closure, with force measurements, to be completed by end of FY'14

Initial Deploy

Full Deploy

Mechanical Deploy to Start of Inflation

Completing Inflation and Initiating Capture

Planetary Defense (PD) Demonstration

- Mission could demonstrate the gradual, precise PD approaches of Ion Beam Deflection (IBD), Gravity Tractor (GT) or Enhanced Gravity Tractor (EGT) on a small or large asteroid, relevant to some classes of potential hazardous asteroids
- For Option A, a PD demo of either IBD or GT could be done on a small asteroid
 - No known design changes, fits in existing timeline
 - IBD operations approach is likely independent of the size of the asteroid
 - IBD, <500 t target, could impart: 1 mm/s in <
 1 hour
 - GT, <500 t target, could impart: 1 mm/s in <
 30 hours

Ion Beam Deflector

Asteroid size-independent planetary defense demo

Schedule for Launch in 2019

Next Steps

- Complete architecture trades studies and prepare for mission option decision meeting in Dec. 2014
 - Figures of merit analysis
 - Cost basis-of-estimate validation and cost update
 - Design refinement and risk reduction analysis and testing of capture system designs
 - Mission and capture systems risk analysis (development and mission)
 - Assessment of "selectability" of current valid candidate targets
- Continue preparation for MCR in Feb. 2015
 - Update design products based on mission decision
 - Establish success criteria and delivery products
 - Project implementation plan review and draft sign-off
 - Procurement strategy options and assessment

Backup and Reference Material

Architecture Mission Options

Option	Rationale				
Option A					
2009 BD	Valid Retrievable Asteroid				
2011 MD	Valid Retrievable Asteroid with Spitzer observation				
2013 EC20	Valid Retrievable Asteroid with radar observation				
To be discovered C-type, 10-m, 1000-t	Potential C-type asteroid				
Option B					
Itokawa	Valid Host Asteroid; Valid Retrievable Boulders; Hayabusa precursor mission				
Bennu	Valid Host Asteroid; B-type asteroid; OSIRIS-REx target				
1999 JU3	Valid Host Asteroid (?); C-type asteroid; Hayabusa 2 target				
2008 EV5	Valid Host Asteroid; C-type asteroid				
To be discovered C-type	Potential for increased returned mass or improved characterization				
Option C					
Phobos	Extensibility to Mars				
Diemos	Extensibility to Mars				
Core Capability					
SEP and Mission Module on MASA Pre-decisional - For Plan					

Option A Mission Primary Objectives

Architecture, mission design and flight system deliver the following primary mission functionality:

 High performance, high throughput, solar electric propulsion system with power up to 40 kW operating beyond Earth orbit. Applicable/extensible to expanding human exploration beyond LEO: 0

- Higher power levels (e.g. 100-250kW) including direct drive
- Spiral out of LEO (space tug)
- Capability to rendezvous, characterize and operate in close proximity to a Near Earth Asteroid (NEA)

- Capability for Ion Beam Deflection or Gravity Tractor prox-ops and deflection within mission cost and timeline
- Capability of capturing and controlling an asteroid up to the 10m mean diameter with a mass of up to 1000t
- Capable of accommodating a wide range of alternate capture and mission concepts (e.g. Phobos)
- Capability of maneuvering/control and returning a NEA, into a stable, crew accessible lunar orbit by the early-mid 2020's, and provide accommodations for crew to explore the NEA

Option A Mission Secondary Objectives

Architecture, mission design and flight system can deliver the following additional secondary objective functionality:

 Science: Provides a unique opportunity to understand the bulk composition and structure of a whole small NEA—a class of NEAs about which very little is known. The NEA could be any one of a wide range of asteroid types.

Future Commercial Use:

- Demonstrates high-specific-power solar arrays and highpower SEP technology.
- Demonstrates potential orbital debris removal technique via IBD on a much larger mass.
- Future Resource Use: Demonstrates the ability to retrieve asteroid material mass >10x the mass launched to Earth orbit
- Partnership Opportunities (International and Commercial): Providing resources for contributed payloads or complementary missions

IBD for Orbital Debris Removal

Mario Merino, Eduardo Ahedo, Claudio Bombardelli, Hodei Urrutxua, and Jesus Peláez, "Ion Beam Shepherd Satellite for Space Debris Removal," 4th European Conference for Aerospace Sciences, July 2011

Secondary Objectives and Extensibility

Planetary Defense

Small Asteroid Capture

Robotic Boulder Capture

- ARM prox ops, autonomous ops, characterization & algorithms applicable
- Slow Push techniques implemented with small development costs
- Slow Push techniques (IBD, GT) demonstrated much more quickly
- More relevant on a PHA
- Opportunity for kinetic impactor

Science, Commercial and Resource Use

Small Asteroid Capture

Robotic Boulder Capture

- Applicability of high power SEP, ARM engineering instruments
- Potential to host "target of opportunity" payloads
- Opportunity to learn about <10m asteroids; ~1:10 are C-type
- Better opportunity to return desired material (if C-type) w/geologic context

Extensibility

Small Asteroid Capture

Robotic Boulder Capture

- In-space SEP and prox ops w/uncooperative target provides broad opportunities (human exploration, science, commercial)
- Supports Exploration Roadmap with partnership opportunities Mars Forward
- Inflatable technology uses

- Near surface ops; remote manipulator

Ion Beam Deflection for orbital debrise Purposand gripper concepts applicability,

Option A: The Asteroid Target and the Inflatable

- Most large asteroids are believed to be loosely held together bodies, i.e. rubble piles. The likelihood that small bodies are fragments of large bodies implies the need for containment in a bag.
 - Tolerant of a wide range of asteroid shapes and mechanical properties
 - Assures containment and eliminates dust as hazard for S/C
 - Local forces on asteroid due to capturing, cinching, berthing and maneuvering are estimated to be small compared to the strength of the body
- Based on inputs from the EVA office and the strong desire to minimize complexity and risk we have limited the design space to simple spinners or slow, <0.5 rpm, tumblers, estimated to include 75% of the small asteroid population

Rubble Pile Compressive
Strength

Bolide Record: 0.1- 1.0
MPa (15-150 psi)

"Dirt" Clod: .2-.4 MPa
(30-60 psi)

Possible lower strength
<0.1MPa

Size Comparisons

