Asteroid Redirect Robotic Mission (ARRM) Concept Overview ## **Briefing to SBAG** Brian Muirhead Chief Engineer and ARRM Pre-project Manager, JPL/Caltech July 30, 2014 #### **ARRM Mission Concept** NASA - Rendezvous with an asteroid and either redirect a whole small asteroid or, a boulder from a large asteroid to the moon's orbit where astronauts can visit it. - Available for crewed exploration by mid-2020's #### Why? - Mission would bring together important NASA objectives: - High power SEP tech demo - Operate in close proximity to a nearearth asteroid and return material for exploration - Demonstrate planetary defense techniques - Prove out SLS/Orion capabilities beyond LEO - Extensible to proving ground and Mars mission objectives - Demonstrate lean implementation techniques to reduce cost and cost risk #### **Asteroid Redirect Mission Robotic Concepts** #### **Small Asteroid Capture, Option A** #### **Robotic Boulder Capture, Option B** ## Current Valid Candidate Asteroids for Mission Design - > June 2019 launches on Delta IV Heavy assumed - Data still preliminary, will be finalized in August | Asteroid | Entire Asteroid or
Boulder | Return Mass
(*max possible) | Asteroid or
Boulder Size | Earth Return
Date | Crew Accessible in DRO | |-----------|-------------------------------|--------------------------------|-----------------------------|----------------------|------------------------| | 2009 BD | entire | 145 t | 3-7 m | Jun 2023 | Oct 2023 | | 2011 MD | entire | 600 t* | 4-12 m | Jul 2024 | Aug 2025 | | 2013 EC20 | entire | 43 t | 3-4 m | Sep 2024 | Oct 2025 | | Itokawa | boulder | 3.6 t* | 1.3-1.6 m | Jun 2024 | Jul 2025 | | Bennu | boulder | 9.9 t* | 2.2-2.7 m | Feb 2024 | Mar 2025 | | 2008 EV5 | boulder | 14.1 t* | 2.5-3.0 m | Jun 2024 | Jul 2025 | ### **Mission Design Overview** ### **Mission Profile Comparison – Points of Departure** | Dhoso / Activity | Small Asteroid (2009 BD) | | Robotic Boulder (Itokawa) | | |-------------------------------------|--------------------------|-----------|---------------------------|-----------| | Phase/Activity | Date/Duration | Xenon Use | Date/Duration | Xenon Use | | Launch | June 1, 2019 | | June 1, 2019 | | | Outbound Leg | 1.2 years | 920 kg | 1.8 years | 2,742 kg | | Asteroid Rendezvous & Proximity Ops | | | | | | Arrival | Jul. 28, 2020 | | Jun. 22, 2021 | | | Characterization & Capture | 30 days | | 51 days | | | Capture Phase Margin | 30 days | | 18 days | | | Planetary Defense Demo | 1 hour | | 51 days | | | Missed Thrust Margin | 30 days | | 30 days | | | Departure | Oct. 26, 2020 | | Nov. 19, 2021 | | | Inbound Leg | 2.2 years | 1,890 kg | 2.6 years | 2,160kg | | Lunar DRO Insertion | Feb. 2024 | 130 kg | Aug. 2025 | 20 kg | | ARCM Availability in DRO** | Mar. 2024 | | Sept 2025 | | | Assumes Delta IV Heavy for PoD. | Xe used: 2,940 kg | | Xe used: 4,922 kg | | SLS could improve performance. *Can return greater mass with later return dates. ** Earlier dates are possible in different transient orbits. SEP Op Time: 1243 days Asteroid Return Mass: 30-145t (2.6-7m mean diameter) SEP Op Time: 1334 days Boulder Return Mass*: 3.6 t (1.3 m spherical, 1.6 m max extent) ### Flight System Summary #### Key Driving Objective: Minimize the cost and technology development risk with extensibility to future missions within constraints ## Architected to provide balanced risk to: - Uncertainties in asteroid characteristics - Proximity operations complexity and duration - Safe crew operations #### Flight system features: - Clean interfaces between SEP, Mission and Capture System modules - High heritage Mission Module, avionics, sensors and core SW - Conops validated by model-based systems engineering analysis - JPL Design Principles technical margins ## Flight System Deployed Configurations #### **Architecture-Level Trade Areas** #### > Reference targets: - Option A: S-type (2013 EC20, 2009 BD, 2011 MD), TBD (including possible C-type) - Option B: S-type (Itokawa), C-type (Bennu, 2008 EV5), TBD - Option C: Phobos/Deimos - Launch vehicles: Atlas V, Delta IVH, Falcon Heavy, SLS - ➤ Launch: June 2019 or June, 2020 - ➤ Inform Planetary Defense - Demo: IBD, GT or EGT operations capability and/or demo measureable deflection - > Capture system design options - Option A: bag, inflatable, mechanical - Option B: hybrid, hover (contingency option for later evaluation), bag - Common design for both - > Arrival for crew accessibility: 2023 through 2025, possible extension to 2026 - > BAA inputs for capture systems, sensors, commercial S/C capabilities and add'I payloads - ➤ Implementation/Acquisition: range from in-house to system contract - > Metrics: Cost, cost risk, technical risk, cost phasing - > FOMs: - Extensibility to Mars and the Proving Ground - Potential science return - Planetary defense demo value - Technology infusion to commercial users - Commercial/International participation #### 2009 BD: Max Return Mass vs. Launch Date #### 2011 MD: Max Return Mass vs. Launch Date ## Rendezvous & Prox-Ops Sensors and Other Payloads P-Pods for up to 6 CubeSats ### **Rendezvous and Proximity Operations Phases** ### **ARM Capture Device Deployed** ## **ARM Capture Device Sequence: Stowed** # ARM Capture Device Sequence: Petal Deployment ## ARM Capture Device Sequence: Bag Fully Deployed ## **ARM** Capture Device Sequence: Approach ## **ARM Capture Device Sequence: Approaching Contact** # ARM Capture Device Sequence: Contact ("Docked") ## ARM Capture Device Sequence: Initiate Closure ## **ARM Capture Device Sequence: Closing** # ARM Capture Device Sequence: Fully Captured #### **Option A: Development and Risk Reduction Status** - ➤ Building new, high fidelity 1/5 scale testbed, 3 m dia x 2 m long, inflatable structure supported capture bag - Design features mechanical initial deployment of 6 arms with inflatable booms at the end of the arms that deploy and control the bag material - System is designed to be fully operational in 1 g including deployment and capture - Initial testing of deployment/ inflation, "docking" to the asteroid, and bag closure, with force measurements, to be completed by end of FY'14 Initial Deploy Full Deploy ## **Mechanical Deploy to Start of Inflation** ## **Completing Inflation and Initiating Capture** ## Planetary Defense (PD) Demonstration - Mission could demonstrate the gradual, precise PD approaches of Ion Beam Deflection (IBD), Gravity Tractor (GT) or Enhanced Gravity Tractor (EGT) on a small or large asteroid, relevant to some classes of potential hazardous asteroids - For Option A, a PD demo of either IBD or GT could be done on a small asteroid - No known design changes, fits in existing timeline - IBD operations approach is likely independent of the size of the asteroid - IBD, <500 t target, could impart: 1 mm/s in < 1 hour - GT, <500 t target, could impart: 1 mm/s in < 30 hours #### Ion Beam Deflector Asteroid size-independent planetary defense demo #### **Schedule for Launch in 2019** #### **Next Steps** - Complete architecture trades studies and prepare for mission option decision meeting in Dec. 2014 - Figures of merit analysis - Cost basis-of-estimate validation and cost update - Design refinement and risk reduction analysis and testing of capture system designs - Mission and capture systems risk analysis (development and mission) - Assessment of "selectability" of current valid candidate targets - Continue preparation for MCR in Feb. 2015 - Update design products based on mission decision - Establish success criteria and delivery products - Project implementation plan review and draft sign-off - Procurement strategy options and assessment ## **Backup and Reference Material** ## **Architecture Mission Options** | Option | Rationale | | | | | |--|---|--|--|--|--| | Option A | | | | | | | 2009 BD | Valid Retrievable Asteroid | | | | | | 2011 MD | Valid Retrievable Asteroid with Spitzer observation | | | | | | 2013 EC20 | Valid Retrievable Asteroid with radar observation | | | | | | To be discovered C-type, 10-m, 1000-t | Potential C-type asteroid | | | | | | Option B | | | | | | | Itokawa | Valid Host Asteroid; Valid Retrievable Boulders; Hayabusa precursor mission | | | | | | Bennu | Valid Host Asteroid; B-type asteroid; OSIRIS-REx target | | | | | | 1999 JU3 | Valid Host Asteroid (?); C-type asteroid; Hayabusa 2 target | | | | | | 2008 EV5 | Valid Host Asteroid; C-type asteroid | | | | | | To be discovered C-type | Potential for increased returned mass or improved characterization | | | | | | Option C | | | | | | | Phobos | Extensibility to Mars | | | | | | Diemos | Extensibility to Mars | | | | | | Core Capability | | | | | | | SEP and Mission Module on MASA Pre-decisional - For Plan | | | | | | #### **Option A Mission Primary Objectives** ## Architecture, mission design and flight system deliver the following primary mission functionality: High performance, high throughput, solar electric propulsion system with power up to 40 kW operating beyond Earth orbit. Applicable/extensible to expanding human exploration beyond LEO: 0 - Higher power levels (e.g. 100-250kW) including direct drive - Spiral out of LEO (space tug) - Capability to rendezvous, characterize and operate in close proximity to a Near Earth Asteroid (NEA) - Capability for Ion Beam Deflection or Gravity Tractor prox-ops and deflection within mission cost and timeline - Capability of capturing and controlling an asteroid up to the 10m mean diameter with a mass of up to 1000t - Capable of accommodating a wide range of alternate capture and mission concepts (e.g. Phobos) - Capability of maneuvering/control and returning a NEA, into a stable, crew accessible lunar orbit by the early-mid 2020's, and provide accommodations for crew to explore the NEA #### **Option A Mission Secondary Objectives** ## Architecture, mission design and flight system can deliver the following additional secondary objective functionality: Science: Provides a unique opportunity to understand the bulk composition and structure of a whole small NEA—a class of NEAs about which very little is known. The NEA could be any one of a wide range of asteroid types. #### Future Commercial Use: - Demonstrates high-specific-power solar arrays and highpower SEP technology. - Demonstrates potential orbital debris removal technique via IBD on a much larger mass. - Future Resource Use: Demonstrates the ability to retrieve asteroid material mass >10x the mass launched to Earth orbit - Partnership Opportunities (International and Commercial): Providing resources for contributed payloads or complementary missions #### IBD for Orbital Debris Removal Mario Merino, Eduardo Ahedo, Claudio Bombardelli, Hodei Urrutxua, and Jesus Peláez, "Ion Beam Shepherd Satellite for Space Debris Removal," 4th European Conference for Aerospace Sciences, July 2011 ### **Secondary Objectives and Extensibility** #### **Planetary Defense** #### **Small Asteroid Capture** #### **Robotic Boulder Capture** - ARM prox ops, autonomous ops, characterization & algorithms applicable - Slow Push techniques implemented with small development costs - Slow Push techniques (IBD, GT) demonstrated much more quickly - More relevant on a PHA - Opportunity for kinetic impactor #### Science, Commercial and Resource Use #### **Small Asteroid Capture** #### **Robotic Boulder Capture** - Applicability of high power SEP, ARM engineering instruments - Potential to host "target of opportunity" payloads - Opportunity to learn about <10m asteroids; ~1:10 are C-type - Better opportunity to return desired material (if C-type) w/geologic context #### **Extensibility** #### **Small Asteroid Capture** #### **Robotic Boulder Capture** - In-space SEP and prox ops w/uncooperative target provides broad opportunities (human exploration, science, commercial) - Supports Exploration Roadmap with partnership opportunities Mars Forward - Inflatable technology uses - Near surface ops; remote manipulator Ion Beam Deflection for orbital debrise Purposand gripper concepts applicability, #### Option A: The Asteroid Target and the Inflatable - Most large asteroids are believed to be loosely held together bodies, i.e. rubble piles. The likelihood that small bodies are fragments of large bodies implies the need for containment in a bag. - Tolerant of a wide range of asteroid shapes and mechanical properties - Assures containment and eliminates dust as hazard for S/C - Local forces on asteroid due to capturing, cinching, berthing and maneuvering are estimated to be small compared to the strength of the body - Based on inputs from the EVA office and the strong desire to minimize complexity and risk we have limited the design space to simple spinners or slow, <0.5 rpm, tumblers, estimated to include 75% of the small asteroid population Rubble Pile Compressive Strength Bolide Record: 0.1- 1.0 MPa (15-150 psi) "Dirt" Clod: .2-.4 MPa (30-60 psi) Possible lower strength <0.1MPa ### **Size Comparisons**