

### **Lunar Exploration Initiative**

**Briefing Topic:** 

## **Lunar Mobility Review**

David A. Kring

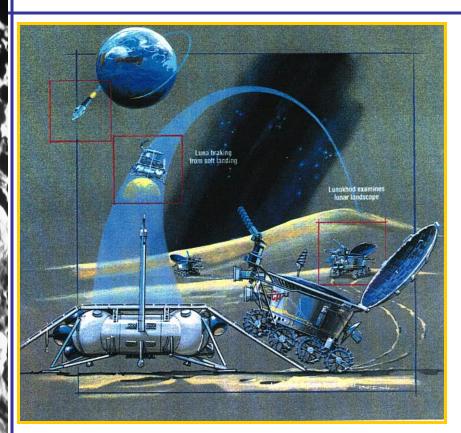
Kring/Space Sciences Lunar Exploration Initiative 2006

### **Lunar Mobility**

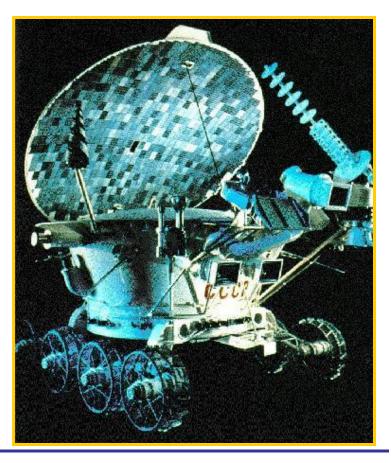
- Robotic Vehicles
  - Lunokhod 1 (Luna 17)
  - Lunokhod 2 (Luna 21)

#### Human Exploration Vehicles

- MET (Apollo 14)
- LRV (Apollo 15, 16, and 17)
- Lunar Motorcycle (for Apollo 15, but not flown)


#### **Lunar Robotic Vehicles**

- **Robotic Rovers** 
  - Lunokhod 1 (Luna 17, Nov 1970)
    - Explored Mare Imbrium
    - 756 kg
    - Rover had 1.7 m wheelbase and was ~1 m wide
    - Driven by 8 rigid spoked wheels with a wire mesh rim connected to three hoops
    - Wheel diameter ~51 cm and width ~20 cm
    - Operated on slopes up to 32°
    - 212-220 day lifetime (~7 lunar days) per Petrov (USSR, 1972) or 322 day lifetime (~11 lunar days) per National Space Science Data Center
    - Traversed 10.54 km
  - Lunokhod 2 (Luna 21, Jan 1973)
    - Explored Mare Serenitatis
    - 840 kg (1814 kg with lander)
    - 170 cm long, 160 cm wide, 135 cm high
    - Two-speeds: ~1 km/hr and ~2 km/hr
    - 139 day lifetime (~5 lunar days)
    - Traversed 37 km


NSSDC 1970-095A; 1973-001A

Kring/Space Sciences Lunar Exploration Initiative

## Lunokhod 2



Powered by batteries that were recharged by a solar panel on lid of payload bay & a Polonium-210 radiogenic heat source Carried 3 TV cameras, one of which was high on rover for navigation, allowing real-time driving by 5-man team in USSR



2006

# **Lunokhod 2 Mission Profile**

- Earth parking orbit
- Translunar injection
- 90 x 100 km parking orbit around Moon
- Perilune lowered to 16 km and stabilized for 40 orbits
- Braking rocket puts lander in free fall
- Main thrusters fire 750 m above surface
- Main thrusters shut down 22 m above surface and secondary thrusters ignited
- Secondary thrusters shut down 1.5 m above surface
- Landing occurs from a free fall height of 1.5 m
- Surface operations
  - Dual-ramp roll-off
  - Navigated while on battery
  - Stopped occasionally to recharge battery with solar panel
  - Hibernated during lunar night, remaining warm with radiogenic heater

# Lunokhod 2 Science

- Science Goals
  - Image lunar surface
  - Examine ambient light levels to assess suitability for astronomical observations
  - Perform laser ranging experiments from Earth
  - Observe solar x-rays
  - Measure local magnetic fields
  - Study mechanical properties of lunar surface materials
- Instruments
  - 4 panoramic cameras
  - Astrophotometer for VIS and UV light
  - Radiometer
  - Rubin-1 photodetector for laser detection & French-supplied laser corner-reflector
  - Solar X-ray detector
  - Magnetometer (at end of 2.5 m boom)
  - Soil mechanics device (penetrometer)

# **Human Exploration Vehicles**

- Modular Equipment Transporter (MET) for Human Exploration
  - Apollo 14 (Jan-Feb 1971)
    - 75 kg (with instruments and samples)
    - Hand-drawn
    - 2 pneumatic tires
    - 40 cm diameter tires, width of 10 cm



- Apollo Lunar Roving Vehicle (LRV) for Human Exploration
  - Apollo 15 (July-Aug 1971), Apollo 16 (April 1972), Apollo 17 (Dec 1972)
    - 708 kg (with astronauts, equipment, and samples; more than half of this mass was the astronauts and their life support systems)
    - 4 wheels composed of a flexible mesh of woven zinc-coated piano wire and chevron-shaped titanium treads
    - 82 cm wheel diameter and 23 cm width
    - Battery-powered
- Lunar Motorcycle
  - Designed for, but not flown on, Apollo 15
    - 2 pneumatic tires



Kring/Space Sciences Lunar Exploration Initiative

# Apollo LRV

| Empty mass                | 218 kg                                             |
|---------------------------|----------------------------------------------------|
| Payload mass              | 490 kg                                             |
| Two astronauts            | 363 kg                                             |
| Experiments, tools, & sam | oles 127 kg                                        |
| Gross Mass                | 790 kg                                             |
| Dimensions                |                                                    |
| Length                    | 310 cm                                             |
| Wheelbase                 | 229 cm                                             |
| Overall width             | 206 cm                                             |
| Height                    | 114 cm                                             |
| Power supply              | 2 parallel, non-rechargable Ag-Zn batteries (36 V) |
| Drive                     | Independent motors on each wheel                   |
| Steering                  | Front and rear independent steering                |
| Minimum turning radius    | 305 cm                                             |
| Wheels                    | Woven Zn-coated piano wire with Ti-treads in       |
|                           | chevron pattern (50% coverage)                     |
| Maximum speed             | 13 km/hr                                           |
| Normal cruise speed       | 6 to 7 km/hr                                       |
| Maximum slope             | 19 to 23 deg                                       |
| Energy consumption        | 35 to 56 W-hr/km                                   |
|                           | 0.05 to 0.08 W-hr/km/kg                            |

Kring/Space Sciences Lunar Exploration Initiative

2006

# Mobility

- Wheeled vehicles
  - Based on Apollo and Lunokhod mission results
  - Vehicles with round wheels work well on lunar surface if ground contact pressure does not exceed 7 to 10 kPa
  - Overcoming surface roughness and soil compaction consumes the energy equivalent to a 1 ½ degree climb up a smooth, rigid slope
  - Surface roughness, in a relatively low gravity situation, limits surface speed (otherwise, one bounces out of control)
    - The LRV was limited to 6-7 km/hr
    - Faster speeds require larger wheels, larger wheel base, greater mass, and/or softer suspension

HVF (COM) 91 t S9.1.11

Kring/Space Sciences Lunar Exploration Initiative

# Mobility

#### • Soft soils

- The Apollo 15 LRV spun its wheels (and got stuck) in soft soil
- The empty LRV weighed only 38 kg in lunar gravity, so the astronauts moved it to solve the problem. This solution is not possible in a completely robotic mission.
- Lunokhod 2 encountered soft soils on the inside walls of craters; the soil was particularly soft at the base of slopes
  - Normal wheel sinkage was 2 cm
  - Wheel sinkage was >20 cm near impact craters

HVF (COM) 91 t S9.1.11

# Maneuvering

- Cohesion varies as a function of geologic terrain
  - Cohesion on interior crater rims is less than that in intercrater areas
  - Cohesion in intercrater areas is less than that on crater rims

HVF (COM) 91 t S9.1.11

# **Slope Requirements**

#### LExSWG (1995) findings for rover mobility

- Impact-cratered terrains
  - Old 100 m diameter crater (a common feature) has maximum slopes of 5 to 10°
  - Somewhat fresher craters have interior slopes of 15 to 20°
  - A very fresh crater, 500 m diameter South Ray Crater, has ejecta blanket and rim slopes of 7° or less; interior crater wall slopes can be as high as 35°, but routes to crater floors with slopes of 17 to 26° exist
  - Even large craters with diameters >10 km have average crater wall slopes <30°</li>
  - Conclusion: capability to ascend and descend slopes of ~25° is sufficient

# **Slope Requirements**

- LExSWG (1995) findings
  - Volcanic terrains
    - Near vertical walls will occur near rilles, but less steep routes to rille floors exist
    - Topographic study of Rima Prinz and Rima Mozart reveal numerous routes to rille floors with slopes of 15 to 20°; routes with slopes <15° also exist</li>
    - Conclusion: capability to ascend and descend slopes of ~25° is sufficient

# Trafficability

- Empirical equations for the slope-climbing ability and energy consumed by a wheeled vehicle moving through lunar soil were determined for Apollo's LRV (Bekker, 1969):
  - Wheel sinkage
  - Soil compaction resistance per wheel
  - Gross pull per wheel
  - Maximum trafficable slope
- These equations failed, however, to represent the trafficability of small rovers in lunar soils, as simulated in 1/6 G conditions on NASA 930 (KC-135A) flights (Carrier, 1994, summarizing Scott)
- A computational method (WHEEL-E) was developed to evaluate small rover wheel performance in lunar soils (Carrier, 1995). These solutions are for flexible, elastic wheels on a flexible, elastic surface, so they may potentially be modified to assess the trafficability of tracks.

# Summary

- Human and robotic rovers operated on the lunar surface in the past.
- The latter operated for several lunar days & nights, enduring cold conditions without solar power.
- The lunar surface is covered with a soft soil that varies in depth and cohesion; a wheeled vehicle has been stuck in this soil.
- LExSWG (1995) recommended future rovers have the ability to climb slopes up to 25° for operations in both impactcratered and volcanic terrains.

## References

- Bekker M. G. (1969) Introduction to Terrain-Vehicle Systems, University of Michigan, Ann Arbor.
- Carrier W.D. III (1994) Trafficability of lunar microrovers, part 1. Lunar Geotechnical Institute document LGI TR94-02.
- Carrier W.D. III (1995) Trafficability of lunar microrovers, part 2. Lunar Geotechnical Institute document LGI TR95-01.
- Carrier W.D. III, G.R. Olhoeft, and W. Mendell (1991) Physical Properties of the Lunar Surface, In *Lunar Sourcebook*, G.H. Heiken, D.T. Vaniman, and B.M. French (eds.), Cambridge University Press, Cambridge.
- LExSWG (1995) Lunar Surface Exploration Strategy, Final Report.
- NASA Space Science Data Center, document 1970-095A.
- NASA Space Science Data Center, document 1973-001A.
- Petrov G.I. (1972) Investigation of the Moon with the Lunokhod 1 space vehicle, In COSPAR Space Research XII, Akademie-Verlag, Berlin.