Overview of Entry, Descent and Landing Issues

Michelle M. Munk STMD EDL Principal Investigator

Presentation to the VEXAG November 19, 2013

Space Technology Technical Areas

• SPACE POWER & ENERGY STORAGE

• ROBOTICS, TELE-ROBOTICS & AUTONOMOUS SYSTEMS

COMMUNICATION & NAVIGATION

• SCIENCE INSTRUMENTS, OBSERVATORIES & SENSOR SYSTEMS

and annual and
S. MILLING
ALL AND A STATE AND
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
Second Second
Contraction of the
100 M 100 W
Sector Sector

• ENTRY, DESCENT & LANDING SYSTEMS

NANOTECHNOLOGY

• MODELING, SIMULATION, INFORMA-TION TECHNOLOGY & PROCESSING

• MATERIALS, STRUCTURES, MECHAN-ICAL SYSTEMS & MANUFACTURING

	Cores A	
	E 34	
		I
G		

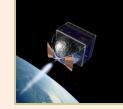
• GROUND & LAUNCH SYSTEMS PROCESSING

• THERMAL MANAGEMENT SYSTEMS

Space Technology Portfolio

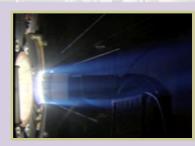
& Growing Innovation Economy

National Aeronautics and Space Auron


5

Game Changing Development

Technology Demonstration Missions


Small Spacecraft Technologies

Space Technology Research Grant

NASA Innovative Advanced Concepts

Center Innovation Fund

Centennial Challenges Prize

Small Business Innovation Research & Small Business Technology Transfer (SBIR/STTR)

Flight Opportunities

Entry Technology VEXAG Findings, Nov. 2012

- <u>Continued development of entry technologies</u> is critical to ensuring availability for New Frontiers-4 and Discovery 13 Venus mission proposals.
- VEXAG encourages NASA's Planetary Science Division to <u>continue the advocacy</u> for and monitor the progress of entry technologies that Space Technology Mission Directorate is currently investing in, and entry technologies available from industry, and then to <u>coordinate the release of the most current</u> <u>technical information</u> prior to issuance of the Announcements of Opportunity.
- VEXAG also encourages NASA to <u>incentivize the adoption of entry</u> <u>technologies</u> needed for these missions <u>including instrumentation</u> to monitor the performance of the thermal protection systems.

Scientific Focus, Mission Modes and Technologies

Critical/Enabl Optional/Enhanci	•	for pa	Critical/Enabling rticular constraints	Mi	ssion,	/Tec	hnolo	рgy
Scientific Domain	Mission Mode		Aerobrake	Aerocapture	Entry	Descent/ Deployment	Descent & Landing	
	Probe/lan	er with heig	ht profiles down to the surface			Х		Х
Atmospheric Composition			rm (e.g. balloon)			Х	Х	
	Orbiter or sensing	nultiple fly	bys with atmospheric remote	+	+			
	Orbiter w	h active/pas	ssive remote sensing	+	+			
Surface Composition and	Short-duration lander to an accessible location					Х		Х
Processes	Short-dur	Short-duration lander to a more challenging location Mobile platform on the surface or in the lower atmosphere				Х		Х
	Mobile pla					Х	Х	Х
								_
	Sustained	loating/flyi	ng) platform(s)			Х	X	
Atmospheric Structure and	Entry/des	nt probes a	nd/or dropsondes			Х		Х
Circulation	Multiple l	nders or pro	bbes that survive to the surface			Х		Х
	Orbiter w	h passive ai	nd/or active remote sensing	+	+			
			ssive remote sensing; minimize s/c de USO for gravity experiment	+	+			
Interior Structure and Dynamics	Geophysic	l lander wit	th a life time of ~1 Venusian year			Х		Х
	Lander ne	work with a	ı lifetime > 1 Venusian year			X		Х

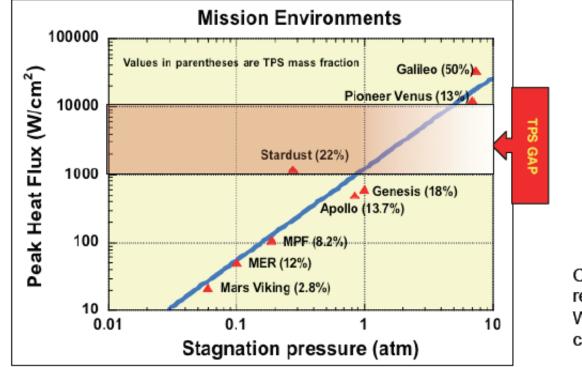
Note: Science objectives and mission modes from the Venus Exploration Roadmap document

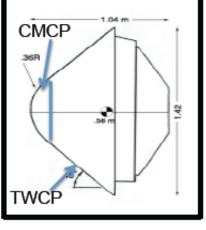
System Technologies Entry Technology - Status

- The thermal protection systems that were used for the Pioneer Venus direct entry probes can no longer be manufactured or qualified
- Venus Entry needs:
 - Ablative TPS for conventional aeroshell heatshield and backshell
 - Low ballistic coefficient (deployable entry system):
 - Enables large landers and balloon missions that require low (30'g – 50'g) for enabling sensitive science instruments or ASRG power system.
- Space Technology Mission Directorate is making investments in entry technologies such as Woven TPS, deployable and inflatable entry systems.

Multi-mission capable 3-D Tailorable TPS

Deployable Entry System

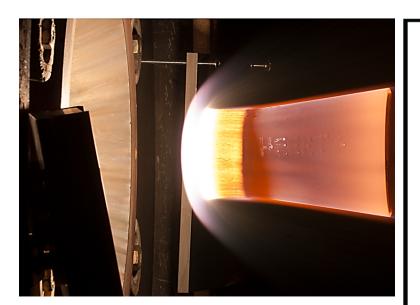

Emerging entry technologies can enable other technologies such as ASRG


Entry Technology Options and Status

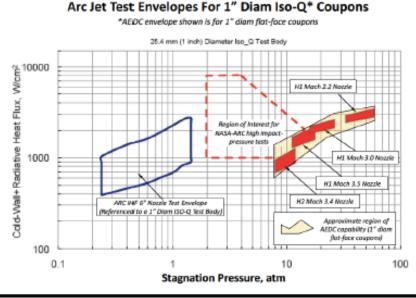
- The heritage carbon phenolic TPS used in previous Venus missions no longer available but an attempt could be made to recreate it
 - An ablative carbon phenolic replacement needs to be regualified for the Unfunded Venus entry conditions.
- STMD is investing in ablative TPS for both heatshield and backshell for sustainable manufacturability, better payload fraction and reduced entry loads
 - 3-D Woven TPS is more robust, sustainable and mass efficient (40% lighter) compared to heritage carbon phenolic for heatshields. **Currently funded**
 - Conformal TPS (CA250) is easier to integrate and more mass efficient (factor of 2 compared to PICA) on the backshell. **Currently funded**
 - Low ballistic coefficient technologies (mechanical deployable and inflatable) with a potential mission application for Venus direct and aerocapture entries. **Currently funded**

Readiness

Thermal Protection System Needs

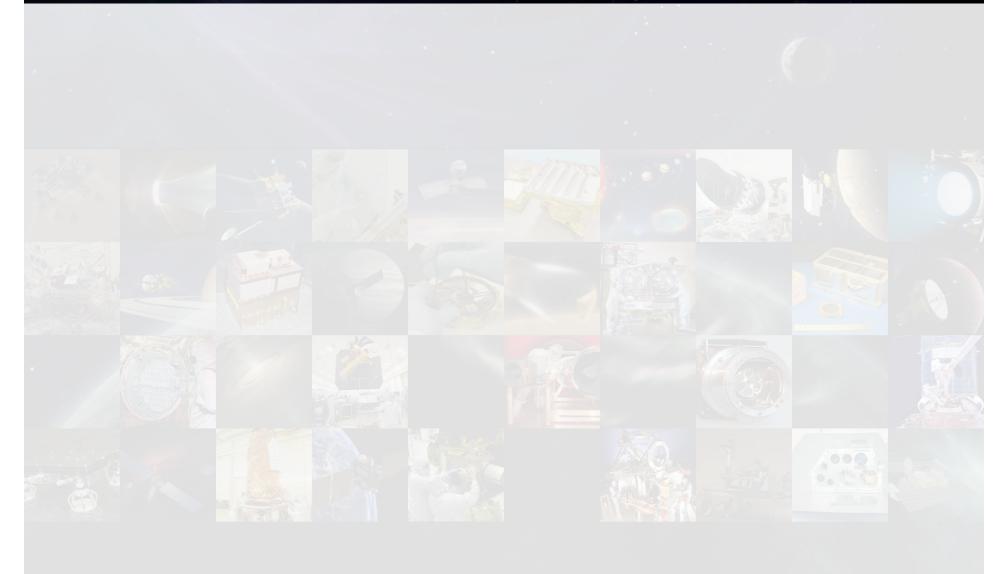

Carbon-Phenolic heatshield requires Chop Molded and Tape-Wrapped manufacturing capability

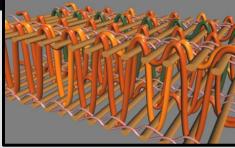
- The only flight proven TPS that can meet the extreme entry environment (heat-flux, pressure, entry g'load) is heritage, entry-grade carbon phenolic
- Decadal survey missions, Venus, Saturn and Uranus, baseline heritage carbon-phenolic


Progress in Testing Relevant Environments

Decadal Sponsored Mission Studies

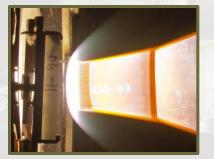
	Saturn Probe	Venus Lander (VITAL)	Venus Balloon (VCM)	Uranus Probe	
Size - Entry System, m Mass – Entry System, kg Mass – Heat shield, kg Entry - Peak Heat-Flux, W/cm ² Entry - total HeatLoad, J/cm ² Entry – Peak Pressure, atm	1.0 216 92 ~5000 ~200,000 4 - 6	3.5 2700 932 ~4500 ~ 13,000 ~ 5	2.0 330 208 4250 ~18,000 ~4.0	0.76 127 33 5500 38,000 N/A	Mission Thermal Requirement


Arc Jet Test Capability


Summary/Current Status

- Future Venus missions are enabled or enhanced by entry systems technologies including TPS and deployable aeroshells
- NASA's Space Technology Mission Directorate is investing in technologies to enable and enhance Venus missions:
 - Woven TPS
 - Conformal TPS
 - Deployable aeroshells
 - Foundational modeling—CFD and materials
- Funding levels are not ideal; progress and customer needs are constantly being reviewed, but there has been, and will be, significant progress before AO release
- An agreement between STMD and SMD to facilitate technology delivery and detail any incentivization is being drafted

Additional Information


Heatshield for Extreme Entry Environment Technology (HEEET)

Designing the Weave

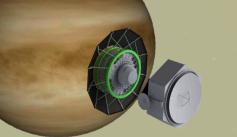
Weaving the TPS

Testing the TPS National Aeronautics and Space Administration Fills a critical gap in TPS technology for high-heating missions

Alternative to nearly-obsolete Carbon Phenolic

Rooted in sustainable textile industry

Enables science missions to the far corners of the Solar System, and human missions Crew Module


Near-Term Infusion: Lunar Capable Compression Pad for Orion

SMD Mission Infusion: Venus, Saturn, High-Speed Sample Return

Adaptable, Deployable Entry and Placement Technology (ADEPT)

Mechanically Deployable, Low Ballistic Coefficient Entry Architecture Enabling:

- Venus science missions with very low G-load (< 30 g's)
- Venus upper atmosphere balloon missions with ASRG
- Mars robotic landers with mass greater than MSL
- Mars exploration with pole-to-pole surface access
- Long term: Enabling Human Mars Exploration

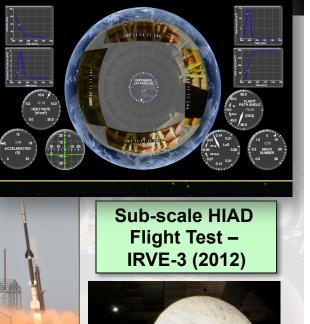
Venus Lander

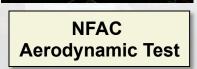
Venus Balloon with ASRG

Carbon Fabric Tested to 250 W/cm²

6m ADEPT Deployed

Mars Heavy Mass Landers


Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

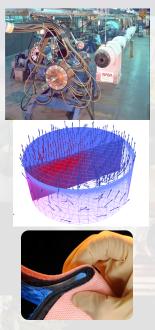

- Enabling at Mars; applications at Earth, Titan, Venus
- Inflated exo-atmospherically, allowing larger entry drag areas not limited by launch vehicle fairing
- Lower ballistic coefficient allows higher altitude deceleration, providing access to higher surface elevations, greater landed mass, lower g's, and longer EDL timelines.
- Feasibility at 3-6 m scale established through ground and flight test

Flexible TPS

Inflatable

Structure

National Aeronautics and Space Administration


Hypersonic Entry, Descent and Landing (HEDL)

Goals:

- Deliver advanced physics based models to enable informed decision-making
- Explore new component-level EDL technologies with feed forward to existing projects or programs

Aerosciences

- Completion and delivery of two new aerothermal CFD codes (US3D and FUN3D)
- A first-ever validated shock layer radiation model
- An experimental validation database, at flight-relevant enthalpy, for current and future generations.

EDL Materials

- Development and delivery of two new flexible TPS systems to enable HIAD missions
- Vastly improved ablator modeling capability
- Improved polymer resins for future woven, flexible and conformal TPS.