

RADIOISOTOPE POWER SYSTEMS & PLANETARY TECHNOLOGIES

Leonard DudzinskiRPS Program Executive

Program Status

VEXAG Meeting

November 19, 2013

POWER TO EXPLORE

Overview

- RPS, Plutonium, and the ASRG Decision
- In-Space Propulsion Technologies
- Broader Planetary Science Technologies
- Science community engagement towards future planetary science technology investment

Advanced Stirling Radioisotope Generator

(ASRG)

ASRG provides increased efficiency (4X current)

Offered as GFE in Discovery 12

Highly enabling for science missions

- Conducted Final Design Review in July 2012
- Engineering units in test
- Controller design modified to be more robust to radiation environment
- Qualification unit (QU) build in progress

Status of Stirling Technology

- NASA and DOE will terminate work on Advanced Stirling Radioisotope Generator (ASRG) flight system development
- Non-nuclear hardware being transferred to NASA Glenn Research Center
- Work on technology development and further maturation for flight-ready systems will continue
- Actively considering options for higher-power Stirling systems (500W-1KW)

Why Cancel the ASRG?

- Continuing tight fiscal environment has severely constrained the NASA planetary science budget
 - ASRG experienced significant cost growth since FY 2009
- Several near-term missions that could have used the ASRG have been delayed or deferred
 - Clear need to balance the promising potential of ASRG vs. the potential loss of other mission opportunities

Looking Ahead

- Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) -- working well on Mars -will be available option for future missions
- Availability of Radioisotope Heater Units (RHUs) also being sustained
- Current U.S. plutonium-238 supply could support Mars 2020 and a Europa mission
- Re-start of Pu-238 production going smoothly, building toward goal of ~ 1kg of isotope/yr
- It is understood by the program that Stirling technology is critical for operations in the Venusian environment

Pu-238 Domestic Production Status

- NASA Authorization Act of 2010 authorized NASA to fund DOE efforts in Pu-238 Production under a reimbursable agreement.
- DOE has begun a multi-phase Plutonium-238 Supply Project consistent with the published Start-up Plan to achieve full-scale production late in the decade.
- Phase I efforts to be completed by in 2013.
 - Project planning, NEPA assessment, analysis of project alternatives, cost and schedule estimate for scale-up to full-scale production (average 1 kg isotope/yr)
- Technology demonstration efforts will achieve by the end of 2015:
 - A qualified neptunium-237 target for irradiation in the High Flux Isotope Reactor
 - A qualified process for post-irradiation target processing
 - A qualified Pu-238 product
- PPBE FY15 plan is transfer full funding to NASA
 - PSP plan adjusted to funding limitations in FY13 and FY14 due to Planetary Science Budget
 - Additionally in FY15, NASA expects to begin to fund DOE to maintain the base RPS infrastructure & capabilities

Update from Pu-238 2010 Plan

- The initial cost range of the project is \$85M to \$125M.
 - This upper bound is higher than in previous reports due to incorporation of knowledge gained during this proof-of-concept stage and the addition of appropriate cost and schedule reserves to the plan.
- The project expects to establish a formal baseline and approval to proceed to project implementation in early fiscal 2016.
- If fully funded, the production capability will be fully operational by Spring 2021
 - The expected full-scale production date has slipped due to budget constraints
- NASA is pleased with the progress made by the Department of Energy toward a restart of a U.S. production capability for Pu-238.
- Pu-238 remains critical to the needs of NASA robotic space exploration, and the Pu-238 Supply Project in on-track to fulfill this need as we end this decade.

Radioisotope Power System Applications in Near Term Planetary Missions

Evolving SMD RPS Mission Planning Set post Decadal Survey

Large Directed Mars New Frontiers Lunar Discovery Other	Projected Launch Year	Power Reqmnt (W _e)	RPS Type (Flight + Spare)	Pu-238 Availability
Mars Science Lab Operational	2011	100	1 MMRTG	
Juno (New Frontiers 2) On its wa	2011		No RPS Requirement	
Discovery 12 Not Selecte	d 2016 - 17	200 - 300	2 ASRG	
Osiris-REX (NF3) In Developme	nt 2016		Directed non-RPS	
Solar Probe In Developme	2019		Directed non-RPS	
Discovery 13	2019 - 23	200 - 300	2 MMRTG	
MSM (Mars 2020) In Planning	2020	100 - 150	1 MMRTG + Spare	
Europa or Uranus or Other†	2024+	400 -500	4-5 MMRTG + Spare	
New Frontiers 4	TBD	300 - 500	TBD + Spare	
Discovery 14	TBD	200 - 300	TBD	
New Frontiers 5	TBD	300 - 500	TBD + Spare	

- 6 year-cadence New Frontier mission opportunities would likely require 500 W_e RPS
- Every Discovery mission opportunity is proposed to offer an RPS option
- Radioisotope heater units may be required on these and other missions
- Other science, exploration, and demo missions not yet identified may also require RPS

† If funded

Plutonium Supply vs Current Planetary Requirements MMRTG Only

Long-Term Outlook

- NASA GRC will continue work on Stirling technology in FY14
- DOE remains a strong RPS Program partner
- Pu-238 production project will continue, sufficient to support future MMRTG Discoveryclass missions every 5-7 years or less frequent New Frontiers/Flagship class
- RPS Program continuing to invest in process improvements for nuclear safety reviews and environmental approvals
- RPS Program continuing to develop energy conversion technologies of promise

In-Space Propulsion Technology

- Planetary Science continues to invest in propulsion & transportation technologies
 - Electric propulsion
 - Aerocapture & atmospheric entry systems
 - Advanced chemical propulsion & lightweight tanks
 - Systems & mission analysis tools
- Future funding is challenged as the current investments near maturity for flight systems
- The program is currently developing an integrated plan for continued investment in Hall and Ion Propulsion
- The program will be seeking comment and support for continued investment, goal to complete flight capabilities
 - Objective is to develop support in next years budget cycle

Planetary Science Technologies

- PSD is beginning the process to re-plan and re-structure planetary science technology investments
 - Address current budget realities
 - Provide for better integration and coordination across PSD and the Agency
 - Seeking partnerships and commercial interest
 - Reduce the burden of sustainment

We will be looking for community input and support

Technology Infusion Study Key Observations and Next Steps

Key Observations:

- End-User Community (industry/proposers) wants to use NASA technologies to support PSD missions
 - Technologies <u>enable</u> missions of interest
- Enabling technologies are not ready (reality & perception)
 - Need to resolve technology readiness issues
 - Development incomplete & Integration support insufficient
 - Proposers perceive SOMA to judge new technologies as high risk
- Current Incentives for technologies are not sufficient

Next Step:

- Follow up discussions to identify/quantify shortfalls, understand technology needs at associated readiness levels
 - Industry (East, West and Central) Purpose: Gain Community Buy in, Open Dialogue to elaborate responses collected or missing
 - SOMA Purpose: Discuss SOMA related responses to RFI
 - Assessment Groups Purpose: Discuss and collect community inputs

Key Messages

- Planetary Science budget realities have forced the re-examination, reprioritization, and re-structuring of planetary science technology investments
 - The ASRG flight development has been terminated as unaffordable in the near-term, and the ASRG project is being re-structured
 - The agency is re-planning the focus of continued Stirling power investment
 - Beginning in FY12, NASA began covering the cost of the DOE Plutonium Supply Project, and in FY15 NASA expects to begin paying for RPS base infrastructure & capability maintenance
 - The In-Space Propulsion Technology Program is developing an integrated investment plan for Hall and Ion thruster technologies
- We are looking for input and feedback from the Planetary Science Community on their priorities and interests in continued technology investments

For More Information

NASA is committed to a continuing dialogue with the community on the future of RPS and the missions they would enable or enhance.

leonard.a.dudzinski@nasa.gov 202-358-2553

rps.nasa.gov

Supplemental Material

Slides beyond this one are as required

Date

ASRG Forward

- Flight Systems
 - Fueled Qual Unit
 - F1 and F2 UnfueledUnits by NLT 10/2016
 - Ready for D-13
 - Ready for NF-4
 - Ready for Mars 2018
 - Other
- "M1" Project
 - Integrate with S/C bus
 - Independent V&V

ORNL Pu-238 Project Concept

- Install new equipment in existing ORNL nuclear facilities
- Neptunium storage remains at INL
- Np shipped to ORNL as needed
- Target fabrication, ORNL laboratories
- Irradiations at HFIR and ATR
- Pu processing, ORNL hot cells
- Pu product shipped to LANL

1.5 kg Pu-238 Average Oxide Production per year

Current Plans for Pu-238 Production

- Pu-238 Supply Project was initiated using NASA funds in FY 2012
- Planned production capacity is an average 1.5 kg oxide/year
- Required production level can be met with existing, operating isotope separations facilities at ORNL
- Target irradiation will be conducted in existing reactors (ATR and HFIR)
- The project has completed NEPA activities and alternatives analysis to select approach
- Tests are underway to finalize the HFIR target design and optimize needed processes
- If fully funded, the production capability will be fully operational by Spring 2021

Plutonium Supply vs Current Planetary Requirements NASA Set-Aside

