HIGH TEMPERATURE ELECTRONICS, COMMUNICATIONS, AND SENSORS FOR VENUS MISSIONS

G. W. Hunter, R. S. Okojie, P. G. Neudeck, G. M. Beheim, G. E. Ponchak, G. Fralick, J. Wrbanek, and M. Krasowski,

NASA Glenn Research Center at Lewis Field
21000 Brookpark Road
Cleveland, OH 44135

D. Spry, and L. Chen
OAI
22800 Cedar Point Road
Cleveland, OH 44142
HARSH ENVIRONMENT ELECTRONICS AND SENSORS APPLICATIONS

• NEEDS:
 ➢ OPERATION IN HARSH ENVIRONMENTS
 ➢ RANGE OF PHYSICAL AND CHEMICAL MEASUREMENTS
 ➢ INCREASE DURABILITY, DECREASE THERMAL SHIELDING, IMPROVE IN-SITU OPERATION

• RESPONSE: UNIQUE RANGE OF HARSH ENVIRONMENT TECHNOLOGY AND CAPABILITIES
 ➢ STANDARD 500C OPERATION BY MULTIPLE SYSTEMS
 ➢ TEMPERATURE, PRESSURE, CHEMICAL SPECIES, WIND AVAILABLE
 ➢ HIGH TEMPERATURE ELECTRONICS TO MAKE SMART SYSTEMS

• ALL-IN-ONE SHOP FOR HARSH ENVIRONMENT SYSTEM APPLICATIONS

• ENABLE EXPANDED MISSION PARAMETERS/IN-SITU MEASUREMENTS

Range of Physical and Chemical Sensors for Harsh Environments

Harsh Environment Packaging (2000 hours at 500C)

High Temperature Signal Processing and Wireless

Long Term: High Temperature “Lick and Stick” Systems

Glenn Research Center at Lewis Field
SUMMARY
NASA GRC HAS THE TOOLS TO ENABLE NEW MISSIONS

EXAMPLE POSSIBLE MISSION: Venus Integrated Weather Sensor (VIWS) System
Sensor Suite to Monitor Venus Weather Conditions including: Data Processing and Communication, Wind Flow, Seismic, Pressure/Temperature/Heat Flux, Chemical Environment

HIGH TEMPERATURE ELECTRONIC NOSE (Chemical Species)

Hi-g SiC ACCELEROMETER (Seismic Activities)
PRESSURE SENSOR (Pressure)

MULTIFUNCTIONAL PHYSICAL SENSOR ARRAY (Temperature, Heat Flux)
HOTProbe (Wind flow, Pressure, Temperature)

SiC ELECTRONICS (Data Processing and Com)
Current-voltage characteristics are very good and stable after 2000 hours.

- Enables realization of analog integrated circuits (amplifiers, oscillators).

Excellent turn-off characteristics, large ON to OFF current ratio (> 1000).

- Enables realization of digital logic circuits.

Current vs. Voltage Characteristics

Operating Time at 500 °C

- 1 hour
- 2000 hours

Key Parameters vs. Time @ 500 °C

- $R_{DS(ON)}$ (kΩ)
- $g_m \times 10$ (mS)
- I_{DSS} (mA)

Less than 7% change occurs during 2000 hours at 500 °C (most during 1st 100 hrs).

- 7% change is smaller than listed on most silicon transistor spec. sheets.
NASA Glenn Silicon Carbide Differential Amplifier

World’s First Semiconductor IC to Surpass
2000 Hours of Electrical Operation at 500 °C

Demonstrates CRITICAL ability to interconnect transistors and other components (resistors) in a small area on a single SiC chip to form useful integrated circuits that are durable at 500 °C.

Optical micrograph of demonstration amplifier circuit before packaging

- 2 transistors and 3 resistors integrated into less than half a square millimeter.
- Single-metal level interconnect.

Test waveforms at 500 °C

- Input (1 V P-P Sine Wave)
- Output 1 hour @ 500 °C
- Output 2000 hours @ 500 °C

Less than 3% change in operating characteristics during 2000 hours of 500 °C operation.
NASA Glenn SiC JFET NOR Gate IC
World’s First Semiconductor Digital IC to Surpass 1000 hours of 500 °C Operation

Waveforms of packaged NOR (= “Not OR”) gate at 500 °C

Time at 500 °C
1 hour
1270 hours

Probe-Test Photo
SIGNIFICANCE OF RECENT ELECTRONICS RESULTS
THE BASIC COMPUTING TOOLS FOR VENUS MISSIONS
HAVE BEEN FABRICATED

♦ THIS DEMONSTRATION SHOWS THAT IT IS NOW POSSIBLE TO
CONSTRUCT MORE COMPLEX CIRCUITS TO PROVIDE COMPARABLE
FUNCTIONALITY TO THOSE USED DURING THE MERCURY/GEMINI
ERA, BUT INSTEAD OPERATING AT 500 °C AND MINIATURIZED.

♦ LOGIC GATES GENERATE FLIP-FLOPS THAT CAN GENERATE STATE-
MACHINES

♦ STATE MACHINES ENABLE:
 ➢ CREATION OF CONTROL ELECTRONICS FOR AN “INTELLIGENT”
 FIXED OR MOBILE AGENT
 ➢ THE CONFIGURATION OF INTELLIGENT DATA TRANSMISSION
 METHODS ALLOWING FOR UNAMBIGUOUS DEMODULATION OF
 SIGNALS UNIQUELY ASSOCIATED WITH EACH
 SENSOR/TRANSMITTER IN A NETWORK.

♦ OBJECTIVE OVER THE COURSE OF THE IVHM PROJECT: TO MOVE
FROM MERCURY/GEMINI LEVEL CAPABILITY TO APOLLO LEVEL
CAPABILITY