

Team PSSS-2 2007

New Frontiers

Unanswered Questions

- Key issues that remain unresolved:
 - Chemical composition of the lower atmosphere
 - Only have 12 measurements of 5 species below 22 km
 - Some of these measurements conflict
 - At an altitude of 22km, Pioneer Venus reported $[SO_2]$ = 185 +/- 43 ppm, while Vega 1 reported $[SO_2]$ = 38 ppm
 - Mineral composition of the surface
 - Only elemental composition has been studied thus far
 - Not sensitive to elements less massive than Z < 12 (Mg)

Unanswered Questions

- Why are these measurements important?
 - To determine if the surface interacts with the atmosphere, and how
 - (ex.) If CO is at equilibrium with CO₂ near the surface, specific iron oxide species are expected. Measuring surface minerals places a constraint on the CO-CO₂ system.
 - To understand the history of the venusian crust
 - (ex.) Measurements of felsic minerals would place constraints on the formation of the venusian crust.
 - To understand the current rate of volcanism
 - (ex.) Measurements of atmospheric sulfur gases and surface minerals will tell us if active volcanism is required to maintain the sulfur cycle on Venus.

Science Motivation

Main Science Goal:

 Investigate Venus to understand its current state and the conditions that gave rise to its extreme environment

NASA/JPL/Caltech

Solar System Roadmap

- SSE Roadmap themes addressed:
 - Understanding solar system diversity
 - Understanding habitable regions around other stars
 - Understanding the future of Earth

Science Objectives

Science Objectives

Science Floor

- A. Characterize the nature of weathering and surfaceatmosphere exchange on Venus
- B. Characterize the lower Venusian atmosphere
- C. Determine the present surface conditions on Venus

 Baseline Mission
- D. Look for evidence of volcanism on Venus
- E. Investigate the dynamics of the upper atmosphere Enhanced Science
- F. Search for lightning signatures
- G. Investigate the space environment around Venus

Science Themes

• VEIL's science links to three main themes:

Theme	NRC Decadal Survey	2006 Solar System Exploration Roadmap	
Origins	Learn how the Sun's family of planets originated and	 How did the Sun's family of planets and minor bodies originate? 	
Evolution	evolved. • Discover how the basic laws of physics and chemistry,	 How did the solar system evolve to its current 	
Processes	acting over eons, can lead to the diverse phenomena observed in complex systems, such as planets.	diverse state? • Understand the processes that determine the fate of the solar system and life within it.	

Science Traceability: Science Floor

Science Objective		Science Investigation	Measurement Objectives	Instruments
A Characterize the	A1.	Determine the composition of the lower	A1a. Direct measurement of reduced (COS, H2S, S1-8) and	
nature of weathering		22 km of the atmosphere. oxidized (SO2) sulfur gases below 22 km.		GCMS
and surface-			A1b. Direct measurement of CO concentration below 13 km.	GCMS
atmosphere exchange	e		A1c. Direct measurement of H2O concentration below 22 km	
on Venus				GCMS
			A1d. Direct measurement of Hydrogen isotopes in the lower	
			***************************************	GCMS
A		Determine the oxidation state of the Venusian crust	A2a. Determine oxidized species on surface.	Raman/IR spectrometer
	v chusian crust		A2b. Direct measurement of CO concentration below 13 km	GCMS
	A3.	Determine wind speeds, thermal and	A3a. Measure wind speeds upon descent from entrance to the	
pressure profiles through		pressure profiles throughout the	surface.	Doppler tracking
		atmosphere.	A3b. Measure temperatures through descent.	Thermometer
			A3c. Measure pressures through descent.	Barometer
A4. Determine heat flux from the surface.		Determine heat flux from the surface.	A4a. Measure the temperature gradient from the base of the	
			cloud deck to the surface.	Thermometer
			A4b. Measure the temperature at the landing site.	Thermometer
	A5.		A5a. High-resolution imaging of surface features.	Visible Imager
		and evidence of wind erosion. A5b. Assess the size, shape and weathering of rocks near the		
			landing site.	Visible Imager

Science Traceability: Science Floor

present surface of Venus. carbonates and basaltic minerals.	
present surface	Raman/IR spectrometer
conditions on Venus B1b. Measure mineral composition below the weathered layer	
	Raman/IR spectrometer/Su
B1c. Measure iron oxide (hematite, magnetite) abundances on	
surface.	Raman/IR spectrometer
B2. Determine the oxidation state of the B2a. Determine oxidized species on surface.	Raman/IR spectrometer
	GCMS
B3. Investigate surface for aeolian features B3a. High-resolution imaging of surface features.	Visible Imager
and evidence of wind erosion. B3b. Assess the size, shape and weathering of rocks near the	
landing site.	Visible Imager
B3c. Identify regions of varying regolith properties.	Visible Imager
B4. Assess relative surface ages. B4a. Look for evidence of cratering.	Visible Imager
B5. Characterize surface morphology B5a. Image the surface of Venus on descent	Visible Imager
B6. Assess surface strength B6a. Measure hardness of rocks on the surface.	Surface Preparation Tool
C1. Determine the composition of the lower C1a. Direct measurement of reduced (COS, H2S, S1-8) and	
	GCMS
atmosphere C1b. Direct measurement of CO concentration below 13 km.	GCMS
C1c. Direct measurement of H2O concentration below 22 km	
	GCMS
C1d. Direct measurement of Hydrogen isotopes in the lower	
wind opinion.	GCMS
C1e. Direct measurement of trace species (e.g. Chloride, Florus	GCMS
C2. Determine noble gas abundances. C2a. Measure noble gas abundances as a function of distance	CC) fC
from the surface.	GCMS
C3 Determine wind speeds, thermal and C3a. Measure wind speeds upon descent from entrance to the	Donnlar tracking
pressure profiles throughout the atmosphere. surface. C3b. Measure temperatures through descent.	Doppler tracking
1	Thermometer
C3c. Measure pressures through descent.	Barometer
C3d. Measure density through descent.	Accelerometer

Instrumentation

Instruments	Mass	Power	Descoped
Visible Imager	1kg	4W	
Meteorological Package	2.4kg	5W	
Gas Chromatograph Mass Spectrometer (GCMS)	17.2kg	10W	
Thermal Infrared Imaging Spectrometer (TIRIS)	4.8kg	5W	
Raman/Laser-Induced Breakdown Spectrometer (LIBS)	12kg	15W	
Surface Preparation Tool	0.2Kg	4W	X
Lightning Detector (VLF and Photodiode) Probe & Carrier S/C	2kg	1W	X
Magnetometer on Carrier S/C	8.1kg	14W	X
Visible Imager on Carrier S/C	1kg	4W	X
Space Env. Monitor on Carrier S/C	19.5kg	10W	X

Landing Sites

L1: Alpha Regio

Lat/Lon: 0.5W, 28S

Elevation: ~ 2 km

L2: Lavinia Planitia

Lat/Lon: 5.5W, 35.5S

Elevation: ~ -0.5 km

Landing Sites

Alpha Regio

Lavinia Planitia

Data Acquisition Profile

80 km

MET package, Imager, and Doppler radio tracking

• 16 Mb

22 km

●GCMS,TIRIS, MET package, • 183 Mb Imager, and Doppler radio tracking

• Imaging rate at 5 images/sec between 80-1 km; 2 images/sec between 1 km and ground

Ground • MET package (15 min.), Imager, TIRIS, and Raman/LIBS

• 100 Mb

MISSION DESIGN

Trajectory

30 day ticks

Launch Period					
Н	Launch	Arrive	C3	DLA	EntVel
Open	5/10/2015	11/8/2015	8.89	-7.2	11.2
Mid	5/20/2015	11/8/2015	7.93	-9.2	11.1
Close	5/30/2015	11/8/2015	8.08	-11.6	11.0

7 month mission 172 day cruise

Launch Vehicle:
Atlas V (401)
2900 kg max payload

Delta-V Budget: 135 m/s TCMs: 60 m/s

Lander 2 Retargeting: 5

m/s

Carrier Divert: 70 m/s

5/20/2015

Sun to Venus View

Approaching Venus

Probes stacked on carrier

Carrier is 3-axis stabilized

T – 5 days to entry 11/3/15

- -Release Probe
- -Stabilize S/C

12 hrs after first probe release

- -Pointing maneuver
- -Spin S/C
- -Release Probe
- -Stabilize
- -Maneuver/ Point Antennas
- -Listen for probe

Scientific data transmitted to Earth

Entry, Descent, and Landing

Assumes uniform atmospheric profile

Descent to 32 km:
15 minutes
25 m/s terminal velocity

Descent to surface: 45 minutes

Velocity will need to be reduced to 11.85 m/s

Increase drag or reduce ballistic coefficient by a factor of 4.45

Probe Descent Profile

Major Architectural Components

Carrier Spacecraft w/ 2 probes mounted

- -Two probes selected for cost effectiveness and redundancy
- -Carrier S/C acts as communications relay
- -TPS selection from heritage

Thermal Protection System

Probe Lander

VEIL Entry Vehicle

Teflon radio-transparent window Aft Cover Fiberglass Aluminum **Pioneer/ Venus Heritage Cost Constraints** No new developments Flight qualified Only minor modifications 1.5m diameter entry shell Houses 73.5cm diameter probe **Aluminum Entry Shell** Carbon Phenolic or PICA TPS

(Front and Aft Shells)

Proposed Probe Design

Folding Legs

Descent Lander

Carrier Spacecraft

Stowed

1st Probe Stowed

2nd Probe Deployed

Mass and Power

	Mass (kg)	Contingency %	Total Mass (kg)	Power (W)
1 Probe	187.7	27	240.7	209
Carrier	324.8	27	413.0	387

Total Cost

<u>Item</u> <u>Cost</u>

(M\$, FY07)

Carrier & Misc. Total 578.07

Probe Total 197.76

TOTAL 775.83

Enhanced Configuration – SPT

- Mineralogical analysis of rock under the weathered exterior
 - Drill / Rock abrasion tool
 - Chisel
 - Ballistics
 - Diamond saw
 - Explosives
 - Articulated arm raises sample to camera
- Rocker chassis mechanism deploys tool to instrument workspace with little mechanical complexity

Mars Exploration Rover RAT surface preparation (NASA/JPL/Cornell)

Enhanced Configuration

- An alternative design for a higher cost cap
- Probes: \$240.98M, 413.8kg
 - Surface Preparation Tool(SPT)
 - Lander lightning experiment
- Carrier: \$538.08M, 369.6 kg
 - Magnetometer experiment
 - Space environment monitor
 - Imager
- Total: \$906.06M
 - No change in launch vehicle or flight trajectory

Conclusions

- Venus presents challenging new scientific opportunities
- Surface and atmospheric science are feasible with New Frontiers budget
 - Architecture includes options that would increase science returns
 - Options for international collaboration
- VEIL type mission could pave the way for future exploration of Venus
 - Establishes "heritage" for landed Venus missions
 - Precursor mission to Flagship rover

Acknowledgements

PSSS-2 wishes to thank:

Tibor Balint Anita Sohus Steve Kondos Susan B-K Coco Karpinski Daniel Sedlacko

Harry Aintablian Richard Cowley Samantha Infeld Bob Miyake Ted Sweetzer Team-X:
Charles Baker
Brian Cox
Cin-Young Lee
Adam Olvero
Mark Wallace
Julie Wertz

Susan Barry
David Hansen
Peter Meakin
Bill Smythe
Mark Welch